SOLID isn’t academic fluff - it’s your insurance against rage-quitting your own codebase. This article breaks down all five principles (SRP, OCP, LSP, ISP, DIP) with Python + UML, showing bad vs good examples. If you want cleaner design, fewer bugs, and teammates who don’t hate you, read this.SOLID isn’t academic fluff - it’s your insurance against rage-quitting your own codebase. This article breaks down all five principles (SRP, OCP, LSP, ISP, DIP) with Python + UML, showing bad vs good examples. If you want cleaner design, fewer bugs, and teammates who don’t hate you, read this.

SOLID Principles In Practice With Python And UML Examples in 2025

2025/08/28 14:22

\ Let’s be real: most developers nod politely when SOLID comes up, then continue writing 500-line classes that smell worse than week-old fried eggs.

Here’s the thing: SOLID isn’t about pleasing your CS professor. It’s about writing code that your future self won’t want to rage-quit from after a single bugfix. Bad code means frustration, late nights, and way too much coffee.

SOLID is a language that senior devs use to communicate across years of maintenance. When you see it in a project, you don’t need to crawl line by line like some code archaeologist digging through ruins. Instead, you can predict the system’s behavior, understand responsibilities, and trust that classes aren’t hiding surprises like a clown in a sewer drain. Follow it, and you can read code like a map. Ignore it, and you're wandering blind through spaghetti caves.

What is SOLID (for the two people who missed the party)?

SOLID is an acronym for five object-oriented design principles coined by Uncle Bob Martin back when 2000s were still a thing:

  • S — Single Responsibility Principle (SRP)
  • O — Open–Closed Principle (OCP)
  • L — Liskov Substitution Principle (LSP)
  • I — Interface Segregation Principle (ISP)
  • D — Dependency Inversion Principle (DIP)

Each principle is simple in words, but game-changing in practice. Let’s walk through them with Python and UML examples, and see why your future code reviewers will thank you.

\


🪓 Single Responsibility Principle (SRP)

One job, one class. Don’t be that developer who mixes logging, DB writes, and business logic in one method.

Why it matters

If a class does too many things, every change risks breaking unrelated behavior. It’s like wiring your home’s electricity, plumbing, and gas through the same pipe - one adjustment and the whole house either floods, burns, or explodes.

Bad Example

Here’s a FileManager class that thinks it’s Batman: reads files, writes them, compresses them, and even appends greetings:

UML

from pathlib import Path from zipfile import ZipFile   class FileManager:     def __init__(self, file_path: str):         self.path = Path(file_path)      def read(self) -> str:         return self.path.read_text('utf-8')      def write(self, content: str):         self.path.write_text(content, 'utf-8')      def compress(self):         with ZipFile(self.path.with_suffix('.zip'), mode='w') as file:             file.write(self.path)      def add_greeting(self, content: str) -> str:         return content + '\nHello world!'   if __name__ == '__main__':     file_path = 'data.txt'     file_manager = FileManager(file_path)     content = file_manager.add_greeting(file_manager.read())     file_manager.write(content)     file_manager.compress() 

Call diagram

What’s wrong?

Although the usage looks easy, every time you need to tweak compression, you risk breaking file writing. Change greetings? Oops, now compression fails.

Good Example

Split responsibilities. Each class does one job, cleanly.

UML

from pathlib import Path from zipfile import ZipFile  DEFAULT_ENCODING = 'utf-8'   class FileReader:     def __init__(self, file_path: Path, encoding: str = DEFAULT_ENCODING):         self.path = file_path         self.encoding = encoding      def read(self) -> str:         return self.path.read_text(self.encoding)   class FileWriter:     def __init__(self, file_path: Path, encoding: str = DEFAULT_ENCODING):         self.path = file_path         self.encoding = encoding      def write(self, content: str):         self.path.write_text(content, self.encoding)   class FileCompressor:     def __init__(self, file_path: Path):         self.path = file_path      def compress(self):         with ZipFile(self.path.with_suffix('.zip'), mode='w') as file:             file.write(self.path)   def add_greeting(self, content: str) -> str:     return content + '\nHello world!'   if __name__ == '__main__':     file_path = Path('data.txt')     content = FileReader(file_path).read()     FileWriter(file_path).write(add_greeting(content))     FileCompressor(file_path).compress() 

Call diagram

Although the call diagram looks a little trickier, now you can modify compression without touching greetings. Future you approves.

\


🧩 Open–Closed Principle (OCP)

Code should be open for extension, closed for modification. Like Netflix - adding new shows without rewriting the entire app.

Why it matters

If every new feature forces you to edit the same class, your code becomes a fragile Jenga tower. Add one more method, and boom - production outage.

Bad Example

The classic “God class of geometry”:

UML

from math import pi   class Shape3D:     def __init__(self, shape_type: str, **kwargs):         self.shape_type = shape_type         self.kwargs = kwargs      def calculate_parallelepiped_volume(self):         return self.kwargs['w'] * self.kwargs['h'] * self.kwargs['l']      def calculate_sphere_volume(self):         return 3 / 4 * pi * self.kwargs['r'] ** 3      def calculate_cone_volume(self):         return 1 / 3 * pi * self.kwargs['r'] ** 2 * self.kwargs['h']      def volume(self) -> float:         if self.shape_type == 'parallelepiped':             return self.calculate_parallelepiped_volume()         if self.shape_type == 'sphere':             return self.calculate_sphere_volume()         if self.shape_type == 'cone':             return self.calculate_cone_volume()         # Add more ifs forever         raise ValueError   if __name__ == '__main__':     print(Shape3D('parallelepiped', w=1.0, h=2.0, l=3.0).volume())     print(Shape3D('sphere', r=3.5).volume())     print(Shape3D('cone', r=3.5, h=2.0).volume()) 

Every time you add a new shape, you hack this class. Here, we are not extending; we are modifying. This violates OCP.

Good Example

Make a common base class, extend it with new shapes.

UML

from abc import ABC, abstractmethod from math import pi   class Shape3D(ABC):     @abstractmethod     def volume(self) -> float:         raise NotImplementedError   class Parallelepiped(Shape3D):     def __init__(self, w: float, h: float, l: float):         self.w, self.h, self.l = w, h, l      def volume(self):         return self.w * self.h * self.l   class Sphere(Shape3D):     def __init__(self, r: float):         self.r = r      def volume(self):         return 3 / 4 * pi * self.r ** 3   class Cone(Shape3D):     def __init__(self, r: float, h: float):         self.r, self.h = r, h      def volume(self):         return 1 / 3 * pi * self.r ** 2 * self.h   if __name__ == '__main__':     print(Parallelepiped(w=1.0, h=2.0, l=3.0).volume())     print(Sphere(r=3.5).volume())     print(Cone(r=3.5, h=2.0).volume()) 

Want a Torus? Just new subclass. No if-hell required, no edits of old code. Clean. Extensible. Chef’s kiss.

\

🤔 Another Discussable Example of OCP Violation

Here’s a class that offers multiple hard-coded greeting methods:

UML

class GreetingContainer:     def __init__(self, name: str):         self.name = name      def hi_greet(self):         print("Hi, " + self.name)      def hey_greet(self):         print("Hey, " + self.name)      def hello_greet(self):         print("Hello, " + self.name) 

At first glance this looks fine: we’re not deleting or altering existing methods, we’re just adding new ones. Technically, we’re extending the class. But here’s the catch: clients using this class must know exactly which method to call, and the interface keeps bloating. This design is brittle - new greetings mean more methods and more places in the code that have to be aware of them. You can argue it’s not a direct OCP violation, but it drifts into LSP territory: instances of GreetingContainer can’t be treated uniformly, since behavior depends on which method you pick (we will discuss it a little later).

\


🦆 Liskov Substitution Principle (LSP)

If code expects an object of some type, any subclass should be usable without nasty surprises. A subclass that breaks this promise isn’t an extension - it’s a landmine disguised as a feature.

Why it matters

Subclasses must be replaceable with their children without breaking stuff. Violate this, and you’ll create runtime landmines.

Bad example

UML

class Bird:     def fly(self):         return "The bird is flying"      def walk(self):         return "The bird is walking"   class Duck(Bird):     def fly(self):         return "The duck is flying"      def walk(self):         return "The duck is walking"   class Penguin(Bird):     def fly(self):         raise AttributeError("Penguins cannot fly:(")      def walk(self):         return "The penguin is walking" 

Penguins do exist, but they break LSP here. Anywhere you expect a Bird, the substitution fails and the design no longer guarantees consistent behavior.

Good example

Split behaviors:

UML

class FlyingBird:     def fly(self):         return "The bird is flying"   class WalkingBird:     def walk(self):         return "The bird is walking"   class Duck(FlyingBird, WalkingBird):     def fly(self):         return "The duck is flying"      def walk(self):         return "The duck is walking"   class Penguin(WalkingBird):     def walk(self):         return "The penguin is walking" 

Now penguins waddle safely. Ducks still fly. Everyone’s happy. No runtime betrayals.

\

Good Example of a greeter from the OCP topic

Define a base Greeter and extend it with new variants:

UML

class Greeter:     def __init__(self, name: str):         self.name = name      def greet(self):         raise NotImplementedError   class HiGreeter(Greeter):     def greet(self):         print("Hi, " + self.name)   class HeyGreeter(Greeter):     def greet(self):         print("Hey, " + self.name)   class HelloGreeter(Greeter):     def greet(self):         print("Hello, " + self.name) 

This design is cleaner: the interface stays stable (greet()), new greetings are real extensions, and polymorphism works. Clients don’t care how the greeting is produced - they just call greet(). And the real benefit: we can swap one Greeter for another and remain confident the code behaves as expected, without digging into implementation details - because we followed OCP and LSP. That’s the spirit of predictable, maintainable design.

For the nerds, the formal definition of this principle is:

en.wikipedia.org/wiki/Liskov_substitution_principle

\


🔌 Interface Segregation Principle (ISP)

Don’t force a class to implement methods it doesn’t need. Otherwise you’re just padding the code with dead weight.

Why it matters

Clients shouldn’t be forced to implement methods they don’t need. If your interface has eat() and sleep(), but a robot only needs charge(), you’re designing like it’s 1999. Formally: many small, focused interfaces are always better than one bloated interface that forces irrelevant obligations.

Bad example

UML

from abc import ABC, abstractmethod   class IEmployee(ABC):     @abstractmethod     def work(self):         pass      @abstractmethod     def eat(self):         pass      @abstractmethod     def sleep(self):         pass   class Programmer(IEmployee):     def work(self):         print("Programmer programs programs")      def eat(self):         print("Programmer eats pizza")      def sleep(self):         print("Programmer falls asleep at 2 AM")   class Android(IEmployee):     def work(self):         print("Android moves boxes")      def eat(self):         raise NotImplementedError("Android doesn't eat, it's a machine")      def sleep(self):         raise NotImplementedError("Android doesn't sleep, it's a machine") 

Good example

Split interfaces:

UML

from abc import ABC, abstractmethod   class IEmployee(ABC):     @abstractmethod     def work(self):         pass   class IHuman(ABC):     @abstractmethod     def eat(self):         pass      @abstractmethod     def sleep(self):         pass   class IMachine:     @abstractmethod     def charge(self):         pass   class Programmer(IEmployee, IHuman):     def work(self):         print("Programmer programs programs")      def eat(self):         print("Programmer eats pizza")      def sleep(self):         print("Programmer falls asleep at 2 AM")   class Android(IEmployee, IMachine):     def work(self):         print("Android moves boxes")      def charge(self):         print("Android charges, wait for 3 hours") 

Now humans eat, robots charge. No unnecessary code. Interfaces are lean, not bloated.

\

\


🏗 Dependency Inversion Principle (DIP)

Depend on abstractions, not concrete implementations. Otherwise, your code is welded to a single library or vendor like shackles you’ll never escape from.

Why it matters

If your service directly imports boto3, good luck swapping S3 for HDFS, GCS, or even MinIO. From a formal perspective, this creates a tight coupling to a specific implementation rather than an abstraction, which severely limits extensibility and portability. Vendor lock-in = pain, and even a simple architectural decision - like supporting both on-prem HDFS and cloud object storage - suddenly requires massive rewrites.

Bad example

UML

import boto3   class DistributedFileSystem:     def __init__(self):         self.client = boto3.client('s3')      def read_file(path: str) -> bytes:         data = self.client.get_object(Key=path)         return data['Body'].read()      def write_file(path: str, file: bytes):         self.client.put_object(Body=file, Key=path) 

Direct AWS dependency. Migrating to another cloud = rewrite.

Good example

Abstract it:

UML

from abc import ABC, abstractmethod  import boto3   class DistributedFileSystem(ABC):     @abstractmethod     def read_file(path: str) -> bytes:         pass      @abstractmethod     def write_file(path: str, file: bytes):         pass   class BotoS3Client(DistributedFileSystem):     def __init__(self):         self.client = boto3.client('s3')      def read_file(path: str) -> bytes:         data = self.client.get_object(Key=path)         return data['Body'].read()      def write_file(path: str, file: bytes):         self.client.put_object(Body=file, Key=path)   class HDFSClient(DistributedFileSystem): ... 

Now you can switch storage backends without rewriting business logic. Future-proof and vendor-agnostic.

\


Final Thoughts: SOLID ≠ Religion, But It Saves Your Sanity

In 2025, frameworks evolve, clouds change, AI tools promise to “replace us”, but the pain of bad code is eternal.

SOLID isn’t dogma - it’s the difference between code that scales with your project and code nobody wants to work with.

Use SOLID not because Uncle Bob said so, but because your future self (and your team) will actually enjoy working with you.

\


👉 What do you think - are SOLID principles still relevant today, or do you prefer chaos-driven development?

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge!

IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge!

The post IP Hits $11.75, HYPE Climbs to $55, BlockDAG Surpasses Both with $407M Presale Surge! appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 18:00 Discover why BlockDAG’s upcoming Awakening Testnet launch makes it the best crypto to buy today as Story (IP) price jumps to $11.75 and Hyperliquid hits new highs. Recent crypto market numbers show strength but also some limits. The Story (IP) price jump has been sharp, fueled by big buybacks and speculation, yet critics point out that revenue still lags far behind its valuation. The Hyperliquid (HYPE) price looks solid around the mid-$50s after a new all-time high, but questions remain about sustainability once the hype around USDH proposals cools down. So the obvious question is: why chase coins that are either stretched thin or at risk of retracing when you could back a network that’s already proving itself on the ground? That’s where BlockDAG comes in. While other chains are stuck dealing with validator congestion or outages, BlockDAG’s upcoming Awakening Testnet will be stress-testing its EVM-compatible smart chain with real miners before listing. For anyone looking for the best crypto coin to buy, the choice between waiting on fixes or joining live progress feels like an easy one. BlockDAG: Smart Chain Running Before Launch Ethereum continues to wrestle with gas congestion, and Solana is still known for network freezes, yet BlockDAG is already showing a different picture. Its upcoming Awakening Testnet, set to launch on September 25, isn’t just a demo; it’s a live rollout where the chain’s base protocols are being stress-tested with miners connected globally. EVM compatibility is active, account abstraction is built in, and tools like updated vesting contracts and Stratum integration are already functional. Instead of waiting for fixes like other networks, BlockDAG is proving its infrastructure in real time. What makes this even more important is that the technology is operational before the coin even hits exchanges. That…
Share
BitcoinEthereumNews2025/09/18 00:32
Breaking: CME Group Unveils Solana and XRP Options

Breaking: CME Group Unveils Solana and XRP Options

CME Group launches Solana and XRP options, expanding crypto offerings. SEC delays Solana and XRP ETF approvals, market awaits clarity. Strong institutional demand drives CME’s launch of crypto options contracts. In a bold move to broaden its cryptocurrency offerings, CME Group has officially launched options on Solana (SOL) and XRP futures. Available since October 13, 2025, these options will allow traders to hedge and manage exposure to two of the most widely traded digital assets in the market. The new contracts come in both full-size and micro-size formats, with expiration options available daily, monthly, and quarterly, providing flexibility for a diverse range of market participants. This expansion aligns with the rising demand for innovative products in the crypto space. Giovanni Vicioso, CME Group’s Global Head of Cryptocurrency Products, noted that the new options offer increased flexibility for traders, from institutions to active individual investors. The growing liquidity in Solana and XRP futures has made the introduction of these options a timely move to meet the needs of an expanding market. Also Read: Vitalik Buterin Reveals Ethereum’s Bold Plan to Stay Quantum-Secure and Simple! Rapid Growth in Solana and XRP Futures Trading CME Group’s decision to roll out options on Solana and XRP futures follows the substantial growth in these futures products. Since the launch of Solana futures in March 2025, more than 540,000 contracts, totaling $22.3 billion in notional value, have been traded. In August 2025, Solana futures set new records, with an average daily volume (ADV) of 9,000 contracts valued at $437.4 million. The average daily open interest (ADOI) hit 12,500 contracts, worth $895 million. Similarly, XRP futures, which launched in May 2025, have seen significant adoption, with over 370,000 contracts traded, totaling $16.2 billion. XRP futures also set records in August 2025, with an ADV of 6,600 contracts valued at $385 million and a record ADOI of 9,300 contracts, worth $942 million. Institutional Demand for Advanced Hedging Tools CME Group’s expansion into options is a direct response to growing institutional interest in sophisticated cryptocurrency products. Roman Makarov from Cumberland Options Trading at DRW highlighted the market demand for more varied crypto products, enabling more advanced risk management strategies. Joshua Lim from FalconX also noted that the new options products meet the increasing need for institutional hedging tools for assets like Solana and XRP, further cementing their role in the digital asset space. The launch of options on Solana and XRP futures marks another step toward the maturation of the cryptocurrency market, providing a broader range of tools for managing digital asset exposure. SEC’s Delay on Solana and XRP ETF Approvals While CME Group expands its offerings, the broader market is also watching the progress of Solana and XRP exchange-traded funds (ETFs). The U.S. Securities and Exchange Commission (SEC) has delayed its decisions on multiple crypto-related ETF filings, including those for Solana and XRP. Despite the delay, analysts anticipate approval may be on the horizon. This week, REX Shares and Osprey Funds are expected to launch an XRP ETF that will hold XRP directly and allocate at least 40% of its assets to other XRP-related ETFs. Despite the delays, some analysts believe that approval could come soon, fueling further interest in these assets. The delay by the SEC has left many crypto investors awaiting clarity, but approval of these ETFs could fuel further momentum in the Solana and XRP futures markets. Also Read: Tether CEO Breaks Silence on $117,000 Bitcoin Price – Market Reacts! The post Breaking: CME Group Unveils Solana and XRP Options appeared first on 36Crypto.
Share
Coinstats2025/09/18 02:35