微軟最新AI模型Fara-7B,強調本地端運行與資料隱私,企業可安心使用。Fara-7B具備卓越效能,透過視覺感知操作,完成複雜任務,展現AI模型的無限潛力。微軟於 11 月 24 日正式發表最新 AI 模型 Fara-7B,這款具備 70 億參數的模型被定位為「電腦使用代理」(Computer Use Agent, CUA),主打可直接在本地端運行、無需依賴雲端算力,同時兼顧高效能與資料隱私。 主打企業資料安全,支援「視覺感知」操作 Fara-7B 的設計核心在於滿足企業客戶對敏感資訊處理的隱私與合規需求。由於模型足夠精簡,可以在個人電腦上執行,不僅降低延遲,也避免資料上傳至雲端,有助於落實本地化自動化,例如用於內部帳號管理、機密文件處理等場景。 這款模型最大特色是採用「看螢幕操作」方式與網站互動——透過螢幕截圖讀取畫面排版,再預測滑鼠點擊、輸入或滾動等動作。與傳統依賴瀏覽器結構的方式不同,Fara-7B 完全基於像素級資料進行推理,因此即便是程式碼結構混亂的網站,也能正常運作。 微軟研究院產品經理 Yash Lara 表示,Fara-7B 透過本地端處理視覺輸入,實現所謂的「像素主權」,讓包括醫療、金融等高度監管產業也能安心使用。 實測效能超越 GPT-4o,小模型更高效 在 WebVoyager 測試基準中,Fara-7B 的任務完成率達 73.5%,高於 GPT-4o 的 65.1% 與 UI-TARS-1.5-7B 的 66.4%。此外,Fara-7B 完成任務平均僅需 16 步操作,明顯優於 UI-TARS-1.5-7B 的 41 步,在準確率與效率之間達成最佳平衡。 Fara-7B 同時引入「關鍵確認點」(critical checkpoints)機制,在遇到涉及用戶個資或不可逆操作(如發送信件、金錢轉移)時會自動暫停並請求確認,搭配「Magentic-UI」互動介面,提供人機協作的安全防線。 知識蒸餾與專家示範訓練,強化自主學習潛力 Fara-7B 採用「知識蒸餾」訓練方法,整合由多代理系統 Magentic-One 所產生的 14.5 萬筆成功導航範例,並壓縮至單一模型中學習。此外,底層模型基於 Qwen2.5-VL-7B,擁有最長 128,000 token 的上下文窗口,具備優異的圖文對齊能力,訓練過程以模仿人類專家操作為主。 微軟表示,未來不會盲目追求更大模型,而是致力於打造更「小而聰明、安全」的模型,並計畫引入強化學習(RL)於合成沙箱環境中進行自學訓練。 已開源上架,可自由測試商用但尚非正式產品 目前 Fara-7B 已透過 MIT 授權開源釋出,可在 Hugging Face 與微軟 Foundry 平台下載使用,允許用於商業應用。但微軟也提醒,該模型尚未達到生產環境部署標準,目前主要適合開發者用於原型測試與功能驗證。   延伸閱讀:Google 推 WeatherNext 2 新一代氣象預報 AI 模型,Pixel、搜尋、Gemini 搶先用 延伸閱讀:研究者發現讓 AI 變得更有創意的懶人提問法,不論 ChatGPT、Gemini 等任何 AI 模型皆能適用 延伸閱讀:Anthropic 發表Claude Haiku 4.5 小型 AI 模型:僅 1/3 成本、效能對標 Sonnet 4,程式表現甚至小贏  加入T客邦Facebook粉絲團微軟最新AI模型Fara-7B,強調本地端運行與資料隱私,企業可安心使用。Fara-7B具備卓越效能,透過視覺感知操作,完成複雜任務,展現AI模型的無限潛力。微軟於 11 月 24 日正式發表最新 AI 模型 Fara-7B,這款具備 70 億參數的模型被定位為「電腦使用代理」(Computer Use Agent, CUA),主打可直接在本地端運行、無需依賴雲端算力,同時兼顧高效能與資料隱私。 主打企業資料安全,支援「視覺感知」操作 Fara-7B 的設計核心在於滿足企業客戶對敏感資訊處理的隱私與合規需求。由於模型足夠精簡,可以在個人電腦上執行,不僅降低延遲,也避免資料上傳至雲端,有助於落實本地化自動化,例如用於內部帳號管理、機密文件處理等場景。 這款模型最大特色是採用「看螢幕操作」方式與網站互動——透過螢幕截圖讀取畫面排版,再預測滑鼠點擊、輸入或滾動等動作。與傳統依賴瀏覽器結構的方式不同,Fara-7B 完全基於像素級資料進行推理,因此即便是程式碼結構混亂的網站,也能正常運作。 微軟研究院產品經理 Yash Lara 表示,Fara-7B 透過本地端處理視覺輸入,實現所謂的「像素主權」,讓包括醫療、金融等高度監管產業也能安心使用。 實測效能超越 GPT-4o,小模型更高效 在 WebVoyager 測試基準中,Fara-7B 的任務完成率達 73.5%,高於 GPT-4o 的 65.1% 與 UI-TARS-1.5-7B 的 66.4%。此外,Fara-7B 完成任務平均僅需 16 步操作,明顯優於 UI-TARS-1.5-7B 的 41 步,在準確率與效率之間達成最佳平衡。 Fara-7B 同時引入「關鍵確認點」(critical checkpoints)機制,在遇到涉及用戶個資或不可逆操作(如發送信件、金錢轉移)時會自動暫停並請求確認,搭配「Magentic-UI」互動介面,提供人機協作的安全防線。 知識蒸餾與專家示範訓練,強化自主學習潛力 Fara-7B 採用「知識蒸餾」訓練方法,整合由多代理系統 Magentic-One 所產生的 14.5 萬筆成功導航範例,並壓縮至單一模型中學習。此外,底層模型基於 Qwen2.5-VL-7B,擁有最長 128,000 token 的上下文窗口,具備優異的圖文對齊能力,訓練過程以模仿人類專家操作為主。 微軟表示,未來不會盲目追求更大模型,而是致力於打造更「小而聰明、安全」的模型,並計畫引入強化學習(RL)於合成沙箱環境中進行自學訓練。 已開源上架,可自由測試商用但尚非正式產品 目前 Fara-7B 已透過 MIT 授權開源釋出,可在 Hugging Face 與微軟 Foundry 平台下載使用,允許用於商業應用。但微軟也提醒,該模型尚未達到生產環境部署標準,目前主要適合開發者用於原型測試與功能驗證。   延伸閱讀:Google 推 WeatherNext 2 新一代氣象預報 AI 模型,Pixel、搜尋、Gemini 搶先用 延伸閱讀:研究者發現讓 AI 變得更有創意的懶人提問法,不論 ChatGPT、Gemini 等任何 AI 模型皆能適用 延伸閱讀:Anthropic 發表Claude Haiku 4.5 小型 AI 模型:僅 1/3 成本、效能對標 Sonnet 4,程式表現甚至小贏  加入T客邦Facebook粉絲團

微軟推出 Fara-7B 小型 AI 模型,在地端直接執行、效能超越 GPT-4o

2025/11/28 13:30

微軟於 11 月 24 日正式發表最新 AI 模型 Fara-7B,這款具備 70 億參數的模型被定位為「電腦使用代理」(Computer Use Agent, CUA),主打可直接在本地端運行、無需依賴雲端算力,同時兼顧高效能與資料隱私。

主打企業資料安全,支援「視覺感知」操作

Fara-7B 的設計核心在於滿足企業客戶對敏感資訊處理的隱私與合規需求。由於模型足夠精簡,可以在個人電腦上執行,不僅降低延遲,也避免資料上傳至雲端,有助於落實本地化自動化,例如用於內部帳號管理、機密文件處理等場景。

這款模型最大特色是採用「看螢幕操作」方式與網站互動——透過螢幕截圖讀取畫面排版,再預測滑鼠點擊、輸入或滾動等動作。與傳統依賴瀏覽器結構的方式不同,Fara-7B 完全基於像素級資料進行推理,因此即便是程式碼結構混亂的網站,也能正常運作。

微軟研究院產品經理 Yash Lara 表示,Fara-7B 透過本地端處理視覺輸入,實現所謂的「像素主權」,讓包括醫療、金融等高度監管產業也能安心使用。

實測效能超越 GPT-4o,小模型更高效

在 WebVoyager 測試基準中,Fara-7B 的任務完成率達 73.5%,高於 GPT-4o 的 65.1% 與 UI-TARS-1.5-7B 的 66.4%。此外,Fara-7B 完成任務平均僅需 16 步操作,明顯優於 UI-TARS-1.5-7B 的 41 步,在準確率與效率之間達成最佳平衡。

Fara-7B 同時引入「關鍵確認點」(critical checkpoints)機制,在遇到涉及用戶個資或不可逆操作(如發送信件、金錢轉移)時會自動暫停並請求確認,搭配「Magentic-UI」互動介面,提供人機協作的安全防線。

知識蒸餾與專家示範訓練,強化自主學習潛力

Fara-7B 採用「知識蒸餾」訓練方法,整合由多代理系統 Magentic-One 所產生的 14.5 萬筆成功導航範例,並壓縮至單一模型中學習。此外,底層模型基於 Qwen2.5-VL-7B,擁有最長 128,000 token 的上下文窗口,具備優異的圖文對齊能力,訓練過程以模仿人類專家操作為主。

微軟表示,未來不會盲目追求更大模型,而是致力於打造更「小而聰明、安全」的模型,並計畫引入強化學習(RL)於合成沙箱環境中進行自學訓練。

已開源上架,可自由測試商用但尚非正式產品

目前 Fara-7B 已透過 MIT 授權開源釋出,可在 Hugging Face 與微軟 Foundry 平台下載使用,允許用於商業應用。但微軟也提醒,該模型尚未達到生產環境部署標準,目前主要適合開發者用於原型測試與功能驗證。

  • 延伸閱讀:Google 推 WeatherNext 2 新一代氣象預報 AI 模型,Pixel、搜尋、Gemini 搶先用
  • 延伸閱讀:研究者發現讓 AI 變得更有創意的懶人提問法,不論 ChatGPT、Gemini 等任何 AI 模型皆能適用
  • 延伸閱讀:Anthropic 發表Claude Haiku 4.5 小型 AI 模型:僅 1/3 成本、效能對標 Sonnet 4,程式表現甚至小贏
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Strive CEO Urges MSCI to Reconsider Bitcoin-Holding Firms’ Index Exclusion

Strive CEO Urges MSCI to Reconsider Bitcoin-Holding Firms’ Index Exclusion

The post Strive CEO Urges MSCI to Reconsider Bitcoin-Holding Firms’ Index Exclusion appeared on BitcoinEthereumNews.com. MSCI’s proposed Bitcoin exclusion would bar companies with over 50% digital asset holdings from indexes, potentially costing firms like Strategy $2.8 billion in inflows. Strive CEO Matt Cole urges MSCI to let the market decide, emphasizing Bitcoin holders’ roles in AI infrastructure and structured finance growth. Strive’s letter to MSCI argues exclusion limits passive investors’ access to high-growth sectors like AI and digital finance. Nasdaq-listed Strive, the 14th-largest Bitcoin treasury firm, highlights how miners are diversifying into AI power infrastructure. The 50% threshold is unworkable due to Bitcoin’s volatility, causing index flickering and higher costs; JPMorgan analysts estimate significant losses for affected firms. Discover MSCI Bitcoin exclusion proposal details and Strive’s pushback. Learn impacts on Bitcoin treasury firms and AI diversification. Stay informed on crypto index changes—read now for investment insights. What is the MSCI Bitcoin Exclusion Proposal? The MSCI Bitcoin exclusion proposal seeks to exclude companies from its indexes if digital asset holdings exceed 50% of total assets, aiming to reduce exposure to volatile cryptocurrencies in passive investment vehicles. This move targets major Bitcoin treasury holders like Strategy, potentially disrupting billions in investment flows. Strive Enterprises, a key player in the space, has formally opposed it through a letter to MSCI’s leadership. How Does the MSCI Bitcoin Exclusion Affect Bitcoin Treasury Firms? The proposal could deliver a substantial setback to Bitcoin treasury firms by limiting their inclusion in widely tracked MSCI indexes, which guide trillions in passive investments globally. According to JPMorgan analysts, Strategy alone might see a $2.8 billion drop in assets under management if excluded from the MSCI World Index, as reported in their recent market analysis. This exclusion would hinder these firms’ ability to attract institutional capital, forcing them to compete at a disadvantage against traditional finance entities. Strive CEO Matt Cole, in his letter to…
Share
BitcoinEthereumNews2025/12/06 11:33
Snowflake and Anthropic Forge $200M AI Partnership for Global Enterprises

Snowflake and Anthropic Forge $200M AI Partnership for Global Enterprises

The post Snowflake and Anthropic Forge $200M AI Partnership for Global Enterprises appeared on BitcoinEthereumNews.com. Peter Zhang Dec 04, 2025 16:52 Snowflake and Anthropic unveil a $200 million partnership to integrate AI capabilities into enterprise data environments, enhancing AI-driven insights with Claude models across leading cloud platforms. In a strategic move to enhance AI capabilities for global enterprises, Snowflake and Anthropic have announced a significant partnership valued at $200 million. This multi-year agreement aims to integrate Anthropic’s Claude models into Snowflake’s platform, offering advanced AI-driven insights to over 12,600 global customers through leading cloud services such as Amazon Bedrock, Google Cloud Vertex AI, and Microsoft Azure, according to Anthropic. Expanding AI Capabilities This collaboration marks a pivotal step in deploying AI agents across the world’s largest enterprises. By leveraging Claude’s advanced reasoning capabilities, Snowflake aims to enhance its internal operations and customer offerings. The partnership facilitates a joint go-to-market initiative, enabling enterprises to extract insights from both structured and unstructured data while adhering to stringent security standards. Internally, Snowflake has already been utilizing Claude models to boost developer productivity and innovation. The Claude-powered GTM AI Assistant, built on Snowflake Intelligence, empowers sales teams to centralize data and query it using natural language, thereby streamlining deal cycles. Innovative AI Solutions for Enterprises Thousands of Snowflake customers are processing trillions of Claude tokens monthly via Snowflake Cortex AI. The partnership’s next phase will focus on deploying AI agents capable of complex, multi-step analysis. These agents, powered by Claude’s reasoning and Snowflake’s governed data environment, allow business users to ask questions in plain English and receive accurate answers, achieving over 90% accuracy on complex text-to-SQL tasks based on internal benchmarks. This collaboration is especially beneficial for regulated industries like financial services, healthcare, and life sciences, enabling them to transition from pilot projects to full-scale production confidently. Industry Impact and Customer…
Share
BitcoinEthereumNews2025/12/06 11:17