Large language models (LLMs) are extraordinary at generating fluent, human-like text, yet they remain constrained by the tendency to hallucinate information. OnceLarge language models (LLMs) are extraordinary at generating fluent, human-like text, yet they remain constrained by the tendency to hallucinate information. Once

Traditional RAG, Agentic RAG and Multi-Agent workflows

Large language models (LLMs) are extraordinary at generating fluent, human-like text, yet they remain constrained by the tendency to hallucinate information. Once trained, they’re frozen in time, unable to access new facts, recall proprietary data or reason about evolving information. 

Retrieval-Augmented Generation (RAG) is a powerful architecture that can improve the factual grounding of LLMs and reduce the problem of hallucination. RAG connects the generative AI model with an external knowledge base that provides more domain specific context and keeps the responses grounded and factual. This is often cheaper than expensive finetuning approaches which involve retraining on domain specific data. RAGs show the promise that they can improve model performance without involving expensive fine-tuning step.

However, traditional RAG based approaches have a limitation that it is still a static pipeline: one query in, one retrieval step, one answer out. It doesn’t reason about what’s missing, it can’t refine its searches, and it doesn’t decide which tools or sources to use. RAGs don’t have access to dynamic real world data where information may be changing constantly and the tasks may require planning. 

Agentic RAG improves on this limitation of traditional RAG based approaches. It reimagines the retrieval process entirely: instead of a passive lookup system, we get an active reasoning agent which is capable of planning, tool use, multi-step retrieval and getting dynamic data from APIs.

In this article, we will deep dive into Traditional RAGs and Agentic RAG. Using industry case studies, we will delineate the key distinctions between these two approaches, establishing guidelines on which one to use for which scenario.

Traditional RAG

Traditional RAG follows a clear static pattern:

  1. A user or system issues a query.
  2. [Retrieval] The system retrieves relevant information from a knowledge base (often via vector search).
  3. [Augmentated] The retrieved information is appended to the prompt for the LLM.
  4. [Generation] The LLM generates an answer with the additional information retrieved

This “retrieve → augment → generate” loop enhances factual accuracy by letting the model use real-world context rather than relying solely on its pretrained weights.

Strengths

  • Fact grounding: Minimizes hallucination by referencing retrieved evidence.
  • Simplicity: Linear, transparent flow which is easy to deploy and maintain.
  • Performance efficiency: Fast and inexpensive for well-defined domains.
  • Reliability: Works well for static or slowly changing corpus.

Limitations

  • Single-pass retrieval: If initial results are incomplete, there’s no self-correction.
  • No reasoning or planning: The system doesn’t decide what else to look for or which sources to query next.
  • Limited flexibility: Tied to one knowledge base and unsuitable for dynamic or multi-source data.

Industry Use cases

  • Internal knowledge assistants: HR or IT chatbots referencing static internal documents.
  • Policy and compliance lookups: Legal or regulatory queries from controlled datasets.
  • Research summarization: Pulling key information from academic or technical papers.

Traditional RAG is highly effective for use cases where questions are specific and context is contained, but it’s less effective when data is fluid or the task requires multi-step reasoning.

Agentic RAG

Agentic RAG builds upon the same retrieval-generation principle but adds autonomy and decision-making through intelligent agents. Instead of a one step retrieval process, it becomes an iterative and goal driven process.

An agent can reason about what information it needs, reformulate queries, call different tools or APIs, and even maintain memory across interactions. In short, it uses RAG as one of several capabilities in a broader planning loop. Here are the core characteristics of an Agentic RAG system : 

  • Iterative retrieval: The agent refines queries until sufficient information is found.
  • Dynamic source selection: It can pull from multiple knowledge stores, APIs and live data feeds.
  • Tool-use and orchestration: The agent can invoke specialized tools (for example, databases, summarizers, or search engines) as needed.
  • Context management: Maintains working memory and long-term state to handle multi-turn or multi-step tasks. Memory allows agents to refer to previous tasks and use that data for future workflows.
  • Planning : They are capable of query routing, step-by-step planning and decision-making.

Advantages

  • Higher flexibility: Capable of handling real-time, evolving data environments.
  • Multi-step reasoning: Solves complex tasks that require planning and synthesis.
  • Reduced hallucinations: Validation loops help ensure factual consistency.

Challenges

  • Increased complexity: Requires orchestration between agents, tools, and memory.
  • Higher cost and latency: Multi-stage reasoning introduces additional computational load per query.
  • Validation: Greater autonomy demands careful monitoring and validation.

Industry Use Cases

  • Customer service orchestration: Intelligent agents retrieve policy data, check CRMs, verify orders, and escalate tickets automatically.
  • Real-time analytics assistants: Systems that integrate with databases, dashboards, and APIs to surface insights and act on triggers.
  • Healthcare and diagnostics: AI systems combining clinical databases, patient data, and recent literature to assist in decision support.
  • Supply chain optimization: Agents pulling from logistics, inventory, and weather APIs to adapt shipping plans dynamically.

These domains demand multi-step reasoning, real-time updates, and flexible handling of data which fits into the Agentic RAG’s use case.

Multi-agent Workflows

Agentic RAG systems naturally evolve into multi-agent workflows as they can contain one or more types of AI Agents. Example AI Agents that can be invoked : 

    • Routing Agent : Routing agents chose which external data sources to invoke to address an incoming user query. Not all queries may need the same set of external calls and routing agents can make the responses smarter by routing to the correct external sources at query time.
  • Query Planning Agent : Query planning agents break down a complex query to subqueries and submit the queries to the right agents for resolution
  • ReAct Agent : Reason and Acting agents can break down a complex task into step by step tasks, delegate it to subagents and then manage the workflow based on the responses of the agents

Traditional vs Agentic RAG Comparison

DimensionNo RAGTraditional RAGAgentic RAG
Retrieval FlowSingle query → generateSingle query → retrieve → generateIterative, multi-step retrieval with refinement
ReasoningNoMinimal; retrieval is reactiveAgent plans, evaluates, and adapts
Knowledge SourcesOnly LLMLLM and One or few static KBsLLM and Multiple dynamic, multimodal sources
HallucinationsUngroundedGrounded on static data from other sourcesGrounded on more real time sources
FlexibilityNoLow; fixed pipelineHigh; real-time and context-aware
Tool UseNoneNoneIntegrated; agents can call tools/APIs
Computational ComplexityLowerLowHigher
LatencyLowerLowHigher
Resource IntensivityLowerLowHigher
Industry Applications Niche areas with specific expert LLMDirect Q&A, knowledge lookupDynamic workflows, decision support, analytics
Market Opportunity
Recall Logo
Recall Price(RECALL)
$0.08387
$0.08387$0.08387
+0.02%
USD
Recall (RECALL) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Solana Hits $4B in Corporate Treasuries as Companies Boost Reserves

Solana Hits $4B in Corporate Treasuries as Companies Boost Reserves

TLDR Solana-based corporate treasuries have surpassed $4 billion in value. These reserves account for nearly 3% of Solana’s total circulating supply. Forward Industries is the largest holder with over 6.8 million SOL tokens. Helius Medical Technologies launched a $500 million Solana treasury reserve. Pantera Capital has a $1.1 billion position in Solana, emphasizing its potential. [...] The post Solana Hits $4B in Corporate Treasuries as Companies Boost Reserves appeared first on CoinCentral.
Share
Coincentral2025/09/18 04:08
MAXI DOGE Holders Diversify into $GGs for Fast-Growth 2025 Crypto Presale Opportunities

MAXI DOGE Holders Diversify into $GGs for Fast-Growth 2025 Crypto Presale Opportunities

Presale crypto tokens have become some of the most active areas in Web3, offering early access to projects that blend culture, finance, and technology. Investors are constantly searching for the best crypto presale to buy right now, comparing new token presales across different niches. MAXI DOGE has gained attention for its meme-driven energy, but early [...] The post MAXI DOGE Holders Diversify into $GGs for Fast-Growth 2025 Crypto Presale Opportunities appeared first on Blockonomi.
Share
Blockonomi2025/09/18 00:00
Vitalik Buterin Reveals Ethereum’s Bold Plan to Stay Quantum-Secure and Simple!

Vitalik Buterin Reveals Ethereum’s Bold Plan to Stay Quantum-Secure and Simple!

Buterin unveils Ethereum’s strategy to tackle quantum security challenges ahead. Ethereum focuses on simplifying architecture while boosting security for users. Ethereum’s market stability grows as Buterin’s roadmap gains investor confidence. Ethereum founder Vitalik Buterin has unveiled his long-term vision for the blockchain, focusing on making Ethereum quantum-secure while maintaining its simplicity for users. Buterin presented his roadmap at the Japanese Developer Conference, and splits the future of Ethereum into three phases: short-term, mid-term, and long-term. Buterin’s most ambitious goal for Ethereum is to safeguard the blockchain against the threats posed by quantum computing.  The danger of such future developments is that the future may call into question the cryptographic security of most blockchain systems, and Ethereum will be able to remain ahead thanks to more sophisticated mathematical techniques to ensure the safety and integrity of its protocols. Buterin is committed to ensuring that Ethereum evolves in a way that not only meets today’s security challenges but also prepares for the unknowns of tomorrow. Also Read: Ethereum Giant The Ether Machine Takes Major Step Toward Going Public! However, in spite of such high ambitions, Buterin insisted that Ethereum also needed to simplify its architecture. An important aspect of this vision is to remove unnecessary complexity and make Ethereum more accessible and maintainable without losing its strong security capabilities. Security and simplicity form the core of Buterin’s strategy, as they guarantee that the users of Ethereum experience both security and smooth processes. Focus on Speed and Efficiency in the Short-Term In the short term, Buterin aims to enhance Ethereum’s transaction efficiency, a crucial step toward improving scalability and reducing transaction costs. These advantages are attributed to the fact that, within the mid-term, Ethereum is planning to enhance the speed of transactions in layer-2 networks. According to Butterin, this is part of Ethereum’s expansion, particularly because there is still more need to use blockchain technology to date. The other important aspect of Ethereum’s development is the layer-2 solutions. Buterin supports an approach in which the layer-2 networks are dependent on layer-1 to perform some essential tasks like data security, proof, and censorship resistance. This will enable the layer-2 systems of Ethereum to be concerned with verifying and sequencing transactions, which will improve the overall speed and efficiency of the network. Ethereum’s Market Stability Reflects Confidence in Long-Term Strategy Ethereum’s market performance has remained solid, with the cryptocurrency holding steady above $4,000. Currently priced at $4,492.15, Ethereum has experienced a slight 0.93% increase over the last 24 hours, while its trading volume surged by 8.72%, reaching $34.14 billion. These figures point to growing investor confidence in Ethereum’s long-term vision. The crypto community remains optimistic about Ethereum’s future, with many predicting the price could rise to $5,500 by mid-October. Buterin’s clear, forward-thinking strategy continues to build trust in Ethereum as one of the most secure and scalable blockchain platforms in the market. Also Read: Whales Dump 200 Million XRP in Just 2 Weeks – Is XRP’s Price on the Verge of Collapse? The post Vitalik Buterin Reveals Ethereum’s Bold Plan to Stay Quantum-Secure and Simple! appeared first on 36Crypto.
Share
Coinstats2025/09/18 01:22