We’ll demonstrate an end-to-end data extraction pipeline engineered for maximum automation, reproducibility, and technical rigor. Our goal is to transform unstructured PDF documentation into precise, structured, and queryable tables. We use the open-source [CocoIndex framework] and state-of-the-art LLMs (like Meta’s Llama 3) managed locally by Ollama.We’ll demonstrate an end-to-end data extraction pipeline engineered for maximum automation, reproducibility, and technical rigor. Our goal is to transform unstructured PDF documentation into precise, structured, and queryable tables. We use the open-source [CocoIndex framework] and state-of-the-art LLMs (like Meta’s Llama 3) managed locally by Ollama.

PDFs to Intelligence: How To Auto-Extract Python Manual Knowledge Recursively Using Ollama, LLMs

2025/12/06 23:00

We’ll demonstrate an end-to-end data extraction pipeline engineered for maximum automation, reproducibility, and technical rigor. Our goal is to transform unstructured PDF documentation—like the official Python manuals—into precise, structured, and queryable tables, using the open-source CocoIndex framework and state-of-the-art LLMs (like Meta’s Llama 3) managed locally by Ollama.

\ If this tutorial is helpful, star the repo! https://github.com/cocoindex-io/cocoindex

Flow Overview

\

  1. Document Parsing: For each PDF file in your collection, the pipeline automatically converts binary content to markdown using a custom, modular parser. This enables flexible ingestion of diverse manual formats—using CPU or GPU accelerators for scalable performance.

    \

  2. Structured Data Extraction: Utilizing built-in ExtractByLlm functions from CocoIndex, each markdown is processed by an LLM (served locally via Ollama, Gemini, or LiteLLM), yielding a fully-typed Python dataclass (ModuleInfo) with classes, methods, arguments, and doc summaries.

    \

  3. Post-Processing & Summarization: The flow applies a custom summarization operator, counting and annotating structural aspects of the extracted module, enabling instant insights and downstream analytics.

    \

  4. Data Collection & Export: All structured outputs are collected by the indexed PostgreSQL backend, supporting fast analytical queries and robust reporting for every processed manual.

    \

This highly extensible pipeline pattern supports new formats, more complex schemas, or alternative LLM providers with minimal friction, leveraging CocoIndex’s comprehensive type and function system.

Prerequisites

  • If you don't have Postgres installed, please refer to the installation guide.
  • Download and install Ollama. Pull your favorite LLM models by:

ollama pull llama3.2

Add Source

Let's add Python docs as a source.

@cocoindex.flow_def(name="ManualExtraction") def manual_extraction_flow( flow_builder: cocoindex.FlowBuilder, data_scope: cocoindex.DataScope ): """ Define an example flow that extracts manual information from a Markdown. """ data_scope["documents"] = flow_builder.add_source( cocoindex.sources.LocalFile(path="manuals", binary=True) ) modules_index = data_scope.add_collector()

flow_builder.add_source will create a table with the following subfields:

  • filename (key, type: str): the filename of the file, e.g. dir1/file1.md
  • content (type: str if binary is False, otherwise bytes): the content of the file

Why This Matters for Automation and Scale

By abstracting file input at this level, you future-proof the flow for ingestion of extremely diverse documentation formats. CocoIndex ensures that each file is indexed, versioned, and queryable, while separating content from structure. This design lays the foundation for highly modular, repeatable end-to-end data pipelines in any technical archiving or document understanding project.

\ Advanced users can extend this source to pull from S3 buckets, GitHub releases, or enterprise drives—just by swapping the source operator and keeping the rest of the flow logic unchanged.

LocalFile

Parse Markdown

To do this, we can plug in a custom function to convert PDF to markdown. There are so many different parsers commercially and open source available; you can bring your own parser here.

class PdfToMarkdown(cocoindex.op.FunctionSpec): """Convert a PDF to markdown.""" @cocoindex.op.executor_class(gpu=True, cache=True, behavior_version=1) class PdfToMarkdownExecutor: """Executor for PdfToMarkdown.""" spec: PdfToMarkdown _converter: PdfConverter def prepare(self): config_parser = ConfigParser({}) self._converter = PdfConverter( create_model_dict(), config=config_parser.generate_config_dict() ) def __call__(self, content: bytes) -> str: with tempfile.NamedTemporaryFile(delete=True, suffix=".pdf") as temp_file: temp_file.write(content) temp_file.flush() text, _, _ = text_from_rendered(self._converter(temp_file.name)) return text

\ You may wonder why we want to define a spec + executor (instead of using a standalone function) here. The main reason is that there's some heavy preparation work (initialize the parser) that needs to be done before being ready to process real data.

Custom Function

\ Plug in the function to the flow.

with data_scope["documents"].row() as doc: doc["markdown"] = doc["content"].transform(PdfToMarkdown())

It transforms each document to Markdown.

  • Leveraging a custom parser within the CocoIndex flow, each binary PDF file is ingested as-is, preserving original fidelity. The use of binary=True ensures compatibility with both text and image or scanned PDFs.
  • The parser is modularized via a FunctionSpec/executor class design pattern, where resource-intensive model loading (Tesseract, PyMuPDF, or commercial OCR) is performed in initialization, and PDF -> markdown logic is encapsulated in an efficient, deterministic transformation for reproducibility.
  • GPU acceleration and caching are seamlessly supported for high-throughput settings.

\

  • The choice of the executor class and not a simple function allows:
  • Heavyweight resource preloading (OCR models, custom dictionaries, GPU contexts)
  • Distributed/cache-aware deployments where workers share model memory
  • Hot-swapping parsers (for testing Tesseract vs. PyMuPDF) without changing flow logic
  • Transformation results are always markdown, which is LLM-friendly and carries hierarchical semantic cues for reliable extraction.

Extract Structured Data From Markdown Files

Define Schema

Let's define the schema ModuleInfo using Python dataclasses, and we can pass it to the LLM to extract the structured data. It's easy to do this with CocoIndex.

@dataclasses.dataclass class ArgInfo: """Information about an argument of a method.""" name: str description: str @dataclasses.dataclass class MethodInfo: """Information about a method.""" name: str args: cocoindex.typing.List[ArgInfo] description: str @dataclasses.dataclass class ClassInfo: """Information about a class.""" name: str description: str methods: cocoindex.typing.List[MethodInfo] @dataclasses.dataclass class ModuleInfo: """Information about a Python module.""" title: str description: str ## Overview: Extracting Structured Data from Python Manuals with Ollama and CocoIndex In this section, we’ll demonstrate an end-to-end data extraction pipeline engineered for maximum automation, reproducibility, and technical rigor. Our goal is to transform unstructured PDF documentation—like the official Python manuals—into precise, structured, and queryable tables, using the open-source CocoIndex framework and state-of-the-art LLMs (like Meta’s Llama 3) managed locally by Ollama. ### Flow Architecture 1. **Document Parsing**: For each PDF file in your collection, the pipeline automatically converts binary content to markdown using a custom, modular parser. This enables flexible ingestion of diverse manual formats—using CPU or GPU accelerators for scalable performance. 2. **Structured Data Extraction**: Utilizing built-in ExtractByLlm functions from CocoIndex, each markdown is processed by an LLM (served locally via Ollama, Gemini, or LiteLLM), yielding a fully-typed Python dataclass (ModuleInfo) with classes, methods, arguments, and doc summaries. 3. **Post-Processing & Summarization**: The flow applies a custom summarization operator, counting and annotating structural aspects of the extracted module, enabling instant insights and down-stream analytics. 4. **Data Collection & Export**: All structured outputs are collected by the indexed PostgreSQL backend, supporting fast analytical queries and robust reporting for every processed manual. This highly extensible pipeline pattern supports new formats, more complex schemas, or alternative LLM providers with minimal friction, leveraging CocoIndex’s comprehensive type and function system. classes: cocoindex.typing.List[ClassInfo] methods: cocoindex.typing.List[MethodInfo]

\

  1. Once converted to markdown, each document is piped into the CocoIndex ExtractByLlm operator, which takes the markdown as a rich, contextually annotated prompt.
  • The LLM (e.g., Llama 3 served by Ollama on your own hardware) is instructed to extract information based on a Python dataclass schema, ensuring type safety and standardization across runs.
  • This design decouples the LLM provider from the downstream flow, so you can swap out Llama for Gemini or OpenAI, and standardize output regardless of LLM vendor differences.

Extract Structured Data

CocoIndex provides built-in functions (e.g., ExtractByLlm) that process data using LLM. This example uses Ollama.

with data_scope["documents"].row() as doc: doc["module_info"] = doc["content"].transform( cocoindex.functions.ExtractByLlm( llm_spec=cocoindex.LlmSpec( api_type=cocoindex.LlmApiType.OLLAMA, # See the full list of models: https://ollama.com/library model="llama3.2" ), output_type=ModuleInfo, instruction="Please extract Python module information from the manual."))

ExtractByLlm

\

  • Use Python dataclasses (ModuleInfoClassInfo, etc.) so that output is always typed and minimally ambiguous. LLM instructions (as a prompt) reinforce extraction fidelity.
  • This approach allows easy validation (with unit/integration tests), strong contract-driven extraction, and automated upstream/downstream compatibility checks.

Add Summarization to Module Info

Using CocoIndex as a framework, you can easily add any transformation to the data and collect it as part of the data index. Let's add a simple summary to each module - like the number of classes and methods, using a simple Python function.

Define Schema

@dataclasses.dataclass class ModuleSummary: """Summary info about a Python module.""" num_classes: int num_methods: int

A simple custom function to summarize the data.

@cocoindex.op.function() def summarize_module(module_info: ModuleInfo) -> ModuleSummary: """Summarize a Python module.""" return ModuleSummary( num_classes=len(module_info.classes), num_methods=len(module_info.methods), )

\

  • By injecting custom functions (plain Python or accelerated), you can perform inline analytics—such as counting modules, classes, methods—right after LLM extraction, embedding summaries or metadata into the data index itself for instant observability and pipeline health checks.
  • This approach allows you to combine weak supervision, LLM output, and classic post-processing in a unified, traceable DAG.

\ In this way,

  • Summary transformation functions provide instant metrics—how many classes, methods, etc.—that can be further used for monitoring, reporting, or pipeline debugging.
  • All summary logic can be written in pure Python or tuned for custom use: e.g., filtering on class count, flagging missing docstrings, or computing code complexity at extraction time.

Plug the function into the flow.

with data_scope["documents"].row() as doc: # ... after the extraction doc["module_summary"] = doc["module_info"].transform(summarize_module)

Custom Function

Collect the Data

After the extraction, we need to cherry-pick anything we like from the output using the collect function from the collector of a data scope defined above.

modules_index.collect( filename=doc["filename"], module_info=doc["module_info"], )

\ Finally, let's export the extracted data to a table.

modules_index.export( "modules", cocoindex.storages.Postgres(table_name="modules_info"), primary_key_fields=["filename"], )

\

  • All results are indexed and versioned in a Postgres backend, supporting direct SQL analytics, audit trails, or integrations with visualization and BI tools.
  • CocoIndex’s collectors enable cherry-picking and normalization of outputs, e.g., only capturing core module info or including full/partial markdown content for additional review.

Query and Test Your Index

Run the following command to set up and update the index.

cocoindex update -L main

\ You'll see the index updates state in the terminal.

\ After the index is built, you have a table with the name modules_info. You can query it at any time, e.g., start a Postgres shell:

psql postgres://cocoindex:cocoindex@localhost/cocoindex

\ And run the SQL query:

SELECT filename, module_info->'title' AS title, module_summary FROM modules_info;

CocoInsight

CocoInsight is a really cool tool to help you understand your data pipeline and data index. It is in Early Access now (Free).

cocoindex server -ci main

\ CocoInsight dashboard is here https://cocoindex.io/cocoinsight. It connects to your local CocoIndex server with zero data retention.

\ This sort of advanced doc extraction pipeline—spanning OCR, LLM-driven type-safe extraction, post-processing, indexing, and visualization—is a blueprint for modern, scalable technical knowledge engineering initiatives.

\ For production, continuous integration and snapshot versioning are recommended, ensuring the entire pipeline is reproducible, observable, and adaptable to new standards or models.

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

The post Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council appeared on BitcoinEthereumNews.com. Michael Saylor and a group of crypto executives met in Washington, D.C. yesterday to push for the Strategic Bitcoin Reserve Bill (the BITCOIN Act), which would see the U.S. acquire up to 1M $BTC over five years. With Bitcoin being positioned yet again as a cornerstone of national monetary policy, many investors are turning their eyes to projects that lean into this narrative – altcoins, meme coins, and presales that could ride on the same wave. Read on for three of the best crypto projects that seem especially well‐suited to benefit from this macro shift:  Bitcoin Hyper, Best Wallet Token, and Remittix. These projects stand out for having a strong use case and high adoption potential, especially given the push for a U.S. Bitcoin reserve.   Why the Bitcoin Reserve Bill Matters for Crypto Markets The strategic Bitcoin Reserve Bill could mark a turning point for the U.S. approach to digital assets. The proposal would see America build a long-term Bitcoin reserve by acquiring up to one million $BTC over five years. To make this happen, lawmakers are exploring creative funding methods such as revaluing old gold certificates. The plan also leans on confiscated Bitcoin already held by the government, worth an estimated $15–20B. This isn’t just a headline for policy wonks. It signals that Bitcoin is moving from the margins into the core of financial strategy. Industry figures like Michael Saylor, Senator Cynthia Lummis, and Marathon Digital’s Fred Thiel are all backing the bill. They see Bitcoin not just as an investment, but as a hedge against systemic risks. For the wider crypto market, this opens the door for projects tied to Bitcoin and the infrastructure that supports it. 1. Bitcoin Hyper ($HYPER) – Turning Bitcoin Into More Than Just Digital Gold The U.S. may soon treat Bitcoin as…
Share
BitcoinEthereumNews2025/09/18 00:27
The Future of Secure Messaging: Why Decentralization Matters

The Future of Secure Messaging: Why Decentralization Matters

The post The Future of Secure Messaging: Why Decentralization Matters appeared on BitcoinEthereumNews.com. From encrypted chats to decentralized messaging Encrypted messengers are having a second wave. Apps like WhatsApp, iMessage and Signal made end-to-end encryption (E2EE) a default expectation. But most still hinge on phone numbers, centralized servers and a lot of metadata, such as who you talk to, when, from which IP and on which device. That is what Vitalik Buterin is aiming at in his recent X post and donation. He argues the next steps for secure messaging are permissionless account creation with no phone numbers or Know Your Customer (KYC) and much stronger metadata privacy. In that context he highlighted Session and SimpleX and sent 128 Ether (ETH) to each to keep pushing in that direction. Session is a good case study because it tries to combine E2E encryption with decentralization. There is no central message server, traffic is routed through onion paths, and user IDs are keys instead of phone numbers. Did you know? Forty-three percent of people who use public WiFi report experiencing a data breach, with man-in-the-middle attacks and packet sniffing against unencrypted traffic among the most common causes. How Session stores your messages Session is built around public key identities. When you sign up, the app generates a keypair locally and derives a Session ID from it with no phone number or email required. Messages travel through a network of service nodes using onion routing so that no single node can see both the sender and the recipient. (You can see your message’s node path in the settings.) For asynchronous delivery when you are offline, messages are stored in small groups of nodes called “swarms.” Each Session ID is mapped to a specific swarm, and your messages are stored there encrypted until your client fetches them. Historically, messages had a default time-to-live of about two weeks…
Share
BitcoinEthereumNews2025/12/08 14:40