Discover how Bright Data optimize its Web Archive to handle petabytes of data in AWS. Learn how a $100,000 billing mistake revealed the trade-off between write speed, read speed, and cloud costs—and how we fixed it with a cost-effective Rearrange Pipeline. Spoiler: We are hiring!Discover how Bright Data optimize its Web Archive to handle petabytes of data in AWS. Learn how a $100,000 billing mistake revealed the trade-off between write speed, read speed, and cloud costs—and how we fixed it with a cost-effective Rearrange Pipeline. Spoiler: We are hiring!

Building a Petabyte-Scale Web Archive

2025/12/09 21:07

In an engineer’s ideal world, architecture is always beautiful. In the real world of high-scale systems, you have to make compromises. One of the fundamental problems an engineer must think about at the start is the vicious trade-off between Write Speed and Read Speed.

Usually, you sacrifice one for the other. But in our case, working with petabytes of data in AWS, this compromise didn’t hit our speed–it hit the wallet.

We built a system that wrote data perfectly, but every time it read from the archive, it burned through the budget in the most painful way imaginable. After all, reading petabytes from AWS costs money for data transfer, request counts, and storage class retrievals… A lot of money!

This is the story of how we optimized it to make it more efficient and cost-effective!

Part 0: How We Ended Up Spending $100,000 in AWS Fees!

True story: a few months back, one of our solution architects wanted to pull a sample export from a rare, low-traffic website to demonstrate the product to a potential client. Due to a bug in the API, the safety limit on file count wasn’t applied.

Because the data for this “rare” site was scattered across millions of archives alongside high-traffic sites, the system tried to restore nearly half of our entire historical storage to find those few pages.

That honest mistake ended up costing us nearly $100,000 in AWS fees!

Now, I fixed the API bug immediately (and added strict limits), but the architectural vulnerability remained. It was a ticking time bomb…

Let me tell you the story of the Bright Data Web Archive architecture: how I drove the system into the trap of “cheap” storage and how I climbed out using a Rearrange Pipeline.

Part 1: The “Write-First” Legacy

When I started working on the Web Archive, the system was already ingesting a massive data stream: millions of requests per minute, tens of terabytes per day. The foundational architecture was built with a primary goal: capture everything without data loss.

It relied on the most durable strategy for high-throughput systems: Append-only Log.

  1. Data (HTML, JSON) is buffered.
  2. Once the buffer hits ~300 MB, it is “sealed” into a TAR archive.
  3. The archive flies off to S3.
  4. After 3 days, files move to S3 Glacier Deep Archive.

For the ingestion phase, this design was flawless. Storing data in Deep Archive costs pennies, and the write throughput is virtually unlimited.

The Problem: That Pricing Nuance

The architecture worked perfectly for writing… until clients came asking for historical data. That’s when I faced a fundamental contradiction:

  • The System Writes by Time: An archive from 12:00 PM contains a mix of cnn.comgoogle.com, and shop.xyz.
  • The System Reads by Domain: The client asks: “Give me all pages from cnn.com for the last year.”

Here lies the mistake that inspired this article. Like many engineers, I’m used to thinking about latency, IOPS, and throughput. But I overlooked the AWS Glacier billing model.

I thought: “Well, retrieving a few thousand archives is slow (48 hours), but it’s not that expensive.”

The Reality: AWS charges not just for the API call, but for the volume of data restored ($ per GB retrieved).

The “Golden Byte” Effect

Imagine a client requests 1,000 pages from a single domain. Because the writing logic was chronological, these pages can be spread across 1,000 different TAR archives.

To give the client these 50 MB of useful data, a disaster occurs:

  1. The system has to trigger a Restore for 1,000 archives.
  2. It lifts 300 GB of data out of the “freezer” (1,000 archives × 300 MB).
  3. AWS bills us for restoring 300 GB.
  4. I extract the 50 MB required and throw away the other 299.95 GB 🤯.

We were paying to restore terabytes of trash just to extract grains of gold. It was a classic Data Locality problem that turned into a financial black hole.

Part 2: Fixing the Mistake: The Rearrange Pipeline

I couldn’t quickly change the ingestion method–the incoming stream is too parallel and massive to sort “on the fly” (though I am working on that), and I needed a solution that worked for already archived data, too.

So, I designed the Rearrange Pipeline, a background process that “defragments” the archive.

This is an asynchronous ETL (Extract, Transform, Load) process, with several critical core components:

  1. Selection: It makes no sense to sort data that clients aren’t asking for. Thus, I direct all new data into the pipeline, as well as data that clients have specifically asked to restore. We overpay for the retrieval the first time, but it never happens a second time.

    \

  2. Shuffling (Grouping): Multiple workers download unsorted files in parallel and organize buffers by domain. Since the system is asynchronous, I don’t worry about the incoming stream overloading memory. The workers handle the load at their own pace.

    \

  3. Rewriting: I write the sorted files back to S3 under a new prefix (to distinguish sorted files from raw ones).

  • Before: 2024/05/05/random_id_ts.tar → [cnn, google, zara, cnn]
  • After: 2024/05/05/cnn/random_id_ts.tar → [cnn, cnn, cnn...]
  1. Metadata Swap: In Snowflake, the metadata table is append-only. Doing MERGE INTO or UPDATE is prohibitively expensive.
  • The Solution: I found it was far more efficient to take all records for a specific day, write them to a separate table using a JOIN, delete the original day’s records, and insert the entire day back with the modified records. I managed to process 300+ days and 160+ billion UPDATE operations in just a few hours on a 4X-Large Snowflake warehouse.

The Result

This change radically altered the product’s economics:

  • Pinpoint Accuracy: Now, when a client asks for cnn.com, the system restores only the data where cnn.com lives.
  • Efficiency: Depending on the granularity of the request (entire domain vs. specific URLs via regex), I achieved a 10% to 80% reduction in “garbage data” retrieval (which is directly proportional to the cost).
  • New Capabilities: Beyond just saving money on dumps, this unlocked entirely new business use cases. Because retrieving historical data is no longer agonizingly expensive, we can now afford to extract massive datasets for training AI models, conducting long-term market research, and building knowledge bases for agentic AI systems to reason over (think specialized search engines). What was previously a financial suicide mission is now a standard operation.

We Are Hiring

Bright Data is scaling the Web Archive even further. If you enjoy:

  • High‑throughput distributed systems,
  • Data engineering at massive scale,
  • Building reliable pipelines under real‑world load,
  • Pushing Node.js to its absolute limits,
  • Solving problems that don’t appear in textbooks…

Then I’d love to talk.

We’re hiring strong Node.js engineers to help build the next generation of the Web Archive. Having data engineering and ETL experience is highly advantageous. Feel free to send your CV to [email protected].

More updates coming as I continue scaling the archive—and as I keep finding new and creative ways to break it!

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

“I Wasted 8 Years in Crypto”: A Builder’s Exit Note Goes Viral Across Asia

“I Wasted 8 Years in Crypto”: A Builder’s Exit Note Goes Viral Across Asia

The post “I Wasted 8 Years in Crypto”: A Builder’s Exit Note Goes Viral Across Asia appeared on BitcoinEthereumNews.com. “I am NOT building a new financial system. I built a casino.”This stark admission from Ken Chan, former co-founder of derivatives protocol Aevo, has been reverberating across Asian crypto communities this week. What began as a post on X has now crossed linguistic borders, been introduced to Chinese communities by local news media, and been widely shared among Korean traders, accumulating millions of views along the way. Sponsored Sponsored From Ayn Rand to Disillusionment: A Libertarian’s Journey Through Crypto Chan’s confession is not merely a critique—it is the unraveling of a personal ideology. He describes himself as a “starry-eyed libertarian” who donated to Gary Johnson’s 2016 presidential campaign after being radicalized by Ayn Rand’s novels. The cypherpunk ethos of Bitcoin spoke directly to this worldview. “Being able to walk across the border with a billion dollars in your head is and always will be a powerful idea to me,” he writes. Yet eight years of industry experience eroded that idealism. Chan recounts how the Layer 1 wars—the flood of capital into Aptos, Sui, Sei, ICP, and countless others—produced no meaningful progress toward a new financial system. Instead, it “literally torched everyone’s money” in pursuit of becoming the next Solana. His verdict is unsparing: “We do not need to build the Casino on Mars.” According to his LinkedIn profile, Chan departed Aevo in May this year. His personal website indicates he is now working on KENSAT, a personal satellite project. It is scheduled to launch aboard a Falcon 9 in June 2026. His confession arrives six months after his departure. It comes as AEVO token trades at roughly $45 million in fully diluted market cap—down approximately 99% from its peak. Chan’s central metaphor—that crypto has become “the biggest, online, multi-player 24/7 casino our generation has ever concocted”—cuts through technical complexity with…
Share
BitcoinEthereumNews2025/12/10 11:04
Bitcoin faces quantum risk: Solana co-founder issues warning

Bitcoin faces quantum risk: Solana co-founder issues warning

The post Bitcoin faces quantum risk: Solana co-founder issues warning appeared on BitcoinEthereumNews.com. Solana co-founder Anatoly Yakovenko has warned that Bitcoin developers must prepare for a potential quantum computing breakthrough that could render the network’s current security measures outdated. Summary At the All-In Summit, Solana co-founder Anatoly Yakovenko reignited debate over Bitcoin’s long-term security. There’s a “50/50” chance that quantum computers could break its cryptographic defenses within five years. Rapid advances in AI show how quickly theory can become reality. The question is not just if Bitcoin must migrate to quantum-safe cryptography—but when. According to Yakovenko, who was speaking at the All-In Summit 2025, there is a “50/50” probability that within five years, quantum computers will be strong enough to crack the cryptographic safeguards protecting Bitcoin wallets. The concern centers on quantum machines running algorithms like Shor’s, which could crack the Elliptic Curve Digital Signature Algorithm currently protecting Bitcoin (BTC) private keys. This would allow attackers to forge transactions and compromise wallets, creating an existential risk for the network. Yakovenko argued that “we should migrate Bitcoin to a quantum-resistant signature scheme” before such technology becomes viable. Skeptics like Blockstream’s Adam Back downplay immediacy of threat The Bitcoin community remains divided on the urgency of quantum threats. Adam Back, CEO of Blockstream, estimated that the technology is still relatively far away and argued that making Bitcoin quantum-ready is “relatively simple.” Bitcoin Core contributor Peter Todd dismissed current quantum computers as non-existent, stating that “demos running toy problems do not count.” Luke Dashjr, another Bitcoin Core contributor, suggested quantum threats pose less immediate danger than spam transactions and developer corruption issues the community currently faces. Bitcoin’s design complicates any quantum upgrade. A migration to post-quantum cryptography would require a hard fork, a highly contentious and technically complex process needing widespread network support. Yakovenko countered skepticism by pointing to quick AI advances as evidence of how…
Share
BitcoinEthereumNews2025/09/22 01:33