The breakthroughs in AI today aren’t happening in research labs. They happen at 2 AM, when production systems fail, on-call engineers scramble, and decisions needThe breakthroughs in AI today aren’t happening in research labs. They happen at 2 AM, when production systems fail, on-call engineers scramble, and decisions need

Engineering the Future: Sai Sreenivas Kodur on Scaling AI Systems That Think, Learn, and Operate at Enterprise Scale

The breakthroughs in AI today aren’t happening in research labs. They happen at 2 AM, when production systems fail, on-call engineers scramble, and decisions need to be made in milliseconds.

Sai Sreenivas Kodur has spent the last decade in those moments. From high-scale search infrastructure to voice analytics platforms and a pioneering AI company for the food and beverage industry, Kodur has worked at the sharp edge of what it means to build AI systems that not only work but endure.

From Systems Research to Scalable Reality

Kodur’s engineering mindset was forged at IIT Madras, where his graduate research blended machine learning with compiler optimization algorithms to improve performance across heterogeneous computing environments.

“The real value wasn’t just the technical depth,” he says. “It was learning how to design systems that solve real constraints across architecture, data, and performance.”

That systems-first framing, treating ML not as magic but as part of a larger machine, became a recurring pattern in his career.

It wasn’t long before he’d be putting those ideas to the test, in production.

Making AI Work in Production

At Myntra and later at Zomato, Kodur led teams that built search and recommendation systems for millions of users. Traffic surged. Catalogs are updated in real time. The margin for error was thin.

“At that scale, it’s not just about a better prediction, it’s about infrastructure,” he explains. “Caching, freshness, indexing logic, these aren’t backend concerns. They are the product experience.”

In one case, a latency misalignment between the model and the cache caused expired items to appear in user feeds. A tiny detail, but in e-commerce, tiny details cost millions.

“That’s when it clicked for me. Scaling AI isn’t about scaling models. It’s about designing the systems around them.”

Serving the Enterprise: Reliability as a Feature

Kodur’s next chapter took him deeper into the enterprise. At Observe.AI, as Director of Engineering, he led platform, analytics, and product engineering just as the company began onboarding major enterprise clients.

Suddenly, the rules changed. Uptime wasn’t a feature; it was a contract. Compliance, observability, and auditability weren’t nice-to-haves; they were essentials. They were table stakes.

“We couldn’t just add features. We had to re-architect the platform to deserve trust,” he says.

The work paid off: his team introduced data observability layers that slashed operational tickets by 60%, redesigned infra to support 10x growth, and supported $15M+ in ARR from new enterprise customers, including Uber, DoorDash, and Swiggy.

“Enterprise AI doesn’t scale by brute force. It scales through clarity. Every layer from the API to the database has to carry the weight.”

Building Spoonshot: A Vertical Intelligence Stack

While at Observe.AI, Kodur also began to see the limitations of general-purpose AI. In sectors like food and beverage, where regulation, science, and sensory data drive decisions, off-the-shelf tools fall short.

So he co-founded Spoonshot, an AI company purpose-built for food innovation.

“We weren’t just analyzing data. We were building a brain for food,” he says.

Spoonshot’s core engine, Foodbrain, ingested over 100TB of alternative data from 30,000+ sources. It mapped ingredients to sensory trends, regulatory data, flavor compounds, and consumer insights, surfacing opportunities that human R&D teams often missed.

“One client spotted an emerging spike in ‘umami’ trends months before it hit retail. That kind of signal isn’t in your sales data, and it’s buried in food science and niche blogs.”

The platform, Genesis, became a trusted tool for companies like Coca-Cola, Heinz, and Pepsico to develop new products faster and with greater confidence.

“Domain-aware AI isn’t just ‘smarter.’ It’s more respectful. It understands the user’s world, not just their data.”

Research That Fixes Real Problems

Kodur’s contributions to AI don’t end at products. He’s also published practical research grounded in day-to-day engineering pain.

His 2025 paper on Debugmate, an AI agent for on-call triaging, tackled a universal developer nightmare: late-night outages and complex system failures.

“Ask any engineer what they dread. It’s not bad code; it’s the moment you’re alone with a vague alert and 10 dashboards. Debugmate was our answer.”

By correlating observability signals, internal system knowledge, and historical tickets, the agent reduced incident load by 77%. Not a theoretical operational relief.

“We weren’t trying to ‘do research.’ We were solving a problem we lived through.”

That ethos practitioner-first, problem-led is a hallmark of Kodur’s approach to AI systems.

Building an AI-Native Organization

In a recent three-part blog series, Kodur mapped out his thinking on what comes next: not just using AI to build software, but reorganizing teams and operating procedures on how software itself gets built with AI in the loop as both builder and operator.

“The old stack was built for human workflows. But today, assistants like Claude and Devin are not just writing code, they’re taking the role of pilots while human engineers are merely co-pilots.

The challenge? Infrastructure hasn’t caught up.

“AI is now a user of your systems and a maintainer. The abstractions need to change.”

In his view, the AI-native organization needs:

  • Self-observing platforms that diagnose and heal themselves
  • Developer velocity abstractions that work with generated code
  • Governance that assumes iteration is constant, not occasional

“Reliability won’t come from checklists. It will come from how the system is born.”

You can read the whole blog series at aiworldorder.xyz.

What’s Next: Compounding Machines

Looking ahead, Kodur believes that platform engineering will define the next decade of AI, not just as a post facto function, but as the backbone of systems that evolve autonomously.

“We’re not just shipping software anymore. We’re building compounding machines,” he says. “Every model you deploy trains another. Every insight feeds the next. If the platform can’t keep up, the whole thing collapses.”

His vision? A world where infrastructure is self-managing, where AI agents operate systems with accountability, and where every line of code moves us closer to scalable, resilient, domain-aware intelligence.

Final Thought: The Blueprint for AI Engineers

Image by DC Studio on Freepik

If you’re an engineering leader wondering how to architect systems for this new reality where AI isn’t a feature but a participant, Sai Sreenivas Kodur’s journey is more than a biography.

It’s a playbook.

Build for change, not control. Assume the AI is watching. And design your systems like they’ll be inherited by an agent with no context but full access.

Welcome to the AI-native era. Are your systems ready?

Want more stories like this? Explore AI Journ’s archive for practitioner-driven insights on building reliable, scalable, AI-first platforms.

Market Opportunity
FUTURECOIN Logo
FUTURECOIN Price(FUTURE)
$0.08405
$0.08405$0.08405
+0.01%
USD
FUTURECOIN (FUTURE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Trump Crypto Adviser Urges Bipartisan Support After Senate Committee Unveils Partisan Crypto Bill

Trump Crypto Adviser Urges Bipartisan Support After Senate Committee Unveils Partisan Crypto Bill

The post Trump Crypto Adviser Urges Bipartisan Support After Senate Committee Unveils Partisan Crypto Bill appeared on BitcoinEthereumNews.com. White House crypto
Share
BitcoinEthereumNews2026/01/23 04:26
CME Group to launch options on XRP and SOL futures

CME Group to launch options on XRP and SOL futures

The post CME Group to launch options on XRP and SOL futures appeared on BitcoinEthereumNews.com. CME Group will offer options based on the derivative markets on Solana (SOL) and XRP. The new markets will open on October 13, after regulatory approval.  CME Group will expand its crypto products with options on the futures markets of Solana (SOL) and XRP. The futures market will start on October 13, after regulatory review and approval.  The options will allow the trading of MicroSol, XRP, and MicroXRP futures, with expiry dates available every business day, monthly, and quarterly. The new products will be added to the existing BTC and ETH options markets. ‘The launch of these options contracts builds on the significant growth and increasing liquidity we have seen across our suite of Solana and XRP futures,’ said Giovanni Vicioso, CME Group Global Head of Cryptocurrency Products. The options contracts will have two main sizes, tracking the futures contracts. The new market will be suitable for sophisticated institutional traders, as well as active individual traders. The addition of options markets singles out XRP and SOL as liquid enough to offer the potential to bet on a market direction.  The options on futures arrive a few months after the launch of SOL futures. Both SOL and XRP had peak volumes in August, though XRP activity has slowed down in September. XRP and SOL options to tap both institutions and active traders Crypto options are one of the indicators of market attitudes, with XRP and SOL receiving a new way to gauge sentiment. The contracts will be supported by the Cumberland team.  ‘As one of the biggest liquidity providers in the ecosystem, the Cumberland team is excited to support CME Group’s continued expansion of crypto offerings,’ said Roman Makarov, Head of Cumberland Options Trading at DRW. ‘The launch of options on Solana and XRP futures is the latest example of the…
Share
BitcoinEthereumNews2025/09/18 00:56
Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

The post Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be appeared on BitcoinEthereumNews.com. Jordan Love and the Green Bay Packers are off to a 2-0 start. Getty Images The Green Bay Packers are, once again, one of the NFL’s better teams. The Cleveland Browns are, once again, one of the league’s doormats. It’s why unbeaten Green Bay (2-0) is a 8-point favorite at winless Cleveland (0-2) Sunday according to betmgm.com. The money line is also Green Bay -500. Most expect this to be a Packers’ rout, and it very well could be. But Green Bay knows taking anyone in this league for granted can prove costly. “I think if you look at their roster, the paper, who they have on that team, what they can do, they got a lot of talent and things can turn around quickly for them,” Packers safety Xavier McKinney said. “We just got to kind of keep that in mind and know we not just walking into something and they just going to lay down. That’s not what they going to do.” The Browns certainly haven’t laid down on defense. Far from. Cleveland is allowing an NFL-best 191.5 yards per game. The Browns gave up 141 yards to Cincinnati in Week 1, including just seven in the second half, but still lost, 17-16. Cleveland has given up an NFL-best 45.5 rushing yards per game and just 2.1 rushing yards per attempt. “The biggest thing is our defensive line is much, much improved over last year and I think we’ve got back to our personality,” defensive coordinator Jim Schwartz said recently. “When we play our best, our D-line leads us there as our engine.” The Browns rank third in the league in passing defense, allowing just 146.0 yards per game. Cleveland has also gone 30 straight games without allowing a 300-yard passer, the longest active streak in the NFL.…
Share
BitcoinEthereumNews2025/09/18 00:41