This article demonstrates a proof-of-concept for training neural networks with JAX to solve PDEs, focusing on shock wave problems. The authors propose NDNN (Novel Deep Neural Networks) as a more accurate alternative to PINNs, running experiments with tanh networks and validating convergence through 1- and 2-shock wave tests. Results show NDNN produces stable, reliable approximations where PINNs fail, highlighting JAX’s ease of implementation and robustness in practical low-dimensional setups.This article demonstrates a proof-of-concept for training neural networks with JAX to solve PDEs, focusing on shock wave problems. The authors propose NDNN (Novel Deep Neural Networks) as a more accurate alternative to PINNs, running experiments with tanh networks and validating convergence through 1- and 2-shock wave tests. Results show NDNN produces stable, reliable approximations where PINNs fail, highlighting JAX’s ease of implementation and robustness in practical low-dimensional setups.

How Scientists Taught AI to Handle Shock Waves

Abstract and 1. Introduction

1.1. Introductory remarks

1.2. Basics of neural networks

1.3. About the entropy of direct PINN methods

1.4. Organization of the paper

  1. Non-diffusive neural network solver for one dimensional scalar HCLs

    2.1. One shock wave

    2.2. Arbitrary number of shock waves

    2.3. Shock wave generation

    2.4. Shock wave interaction

    2.5. Non-diffusive neural network solver for one dimensional systems of CLs

    2.6. Efficient initial wave decomposition

  2. Gradient descent algorithm and efficient implementation

    3.1. Classical gradient descent algorithm for HCLs

    3.2. Gradient descent and domain decomposition methods

  3. Numerics

    4.1. Practical implementations

    4.2. Basic tests and convergence for 1 and 2 shock wave problems

    4.3. Shock wave generation

    4.4. Shock-Shock interaction

    4.5. Entropy solution

    4.6. Domain decomposition

    4.7. Nonlinear systems

  4. Conclusion and References

4.1. Practical implementations

This subsection is devoted to the practical aspects of the training process of neural networks. The implementation of the algorithms above is performed using the library neural network jax, see [26]. Although the algorithms look complex, they are actually very easy to implement using jax and we did not face any difficulty in the tuning of the hyper-parameters. In this paper we propose a proof-of-concept of a novel method in low dimension, and which ultimately deals with simple (piecewise-)smooth functions. As a consequence, we have not addressed in details questions related to the choice of the optimization algorithm or of the hyper-parameters, because in this setting they are not particularly relevant. In our numerical simulations we have considered tanh neural networks with one or two hidden layers. The learning nodes to approximate the PDE residuals are randomly selected in the rectangular regions R = (0, 1) × (0, T) (see Subsection 2.1). The weights λ, µ in (12) and (21) are taken equal to 1/2, and more generally for equations with several shock waves or for systems, an equal weight is given to each contribution of the loss functions. Moreover the neural

\

\ In all the numerical experiments below we consider the problem (1a)-(1b), and in the following experiments we only specify Ω × [0, T], f(u) and u0. We refer to the results with our algorithms as NDNN solution.

4.2. Basic tests and convergence for 1 and 2 shock wave problems

In this subsection, we do not consider any domain decomposition, so that only one global loss function is minimized as described in Subsections 2.1, 2.2.

\ Experiment 1. In this experiment we consider Ω × [0, T] = (−4, 1) × [0, 3/4] with f(u) = 4u(2 − u). The initial data is given by

\ \

\ \ In the time interval [0, 1/2], it is constituted by a rarefaction and a shock wave with constant velocity. Then, in the time interval [1/2, 3/4] the initial shock wave interacts with the rarefaction wave to produce a new shock with non-constant velocity. More specifically the solution is given by

\ \

\ \ Here γ is the DL and it solves

\ \

\ \ for t ∈ [1/2, 1] and γ(1/2) = 0.

\ \

\ \ \ Figure 1: Experiment 1. (Left) Neural network solution. (Middle) Solution of reference. (Right) Direct PINN solution.

\ \ \ Figure 2: Experiment 1. Loss function.

\ \ Let us mention that using the same numerical data, a direct PINN algorithm provides a very inaccurate approximation of the stationary then non-stationary shock waves, while our algorithm provides accurate approximations. This last point is discussed in the 2 following tests.

\ \

\ \ \

\ \ \ Figure 3: Experiment 2.(Left) Loss function. (Right) Space-time solution.

\ \ \ Figure 4: Experiment 2. (Left) Godunov scheme solution at CFL=0.9 and neural network solution at time T = 0.5.

\ \ \

\ \ \ Figure 5: Experiment 3. (Left)

\ \ These experiments allow to validate the convergence of the proposed approach.

\

:::info Authors:

(1) Emmanuel LORIN, School of Mathematics and Statistics, Carleton University, Ottawa, Canada, K1S 5B6 and Centre de Recherches Mathematiques, Universit´e de Montr´eal, Montreal, Canada, H3T 1J4 ([email protected]);

(2) Arian NOVRUZI, a Corresponding Author from Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada ([email protected]).

:::


:::info This paper is available on arxiv under CC by 4.0 Deed (Attribution 4.0 International) license.

:::

\

Market Opportunity
Waves Logo
Waves Price(WAVES)
$0.6614
$0.6614$0.6614
+0.48%
USD
Waves (WAVES) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

VIRTUAL Weekly Analysis Jan 21

VIRTUAL Weekly Analysis Jan 21

The post VIRTUAL Weekly Analysis Jan 21 appeared on BitcoinEthereumNews.com. VIRTUAL closed the week up 3.57% at $0.84, but the long-term downtrend maintains its
Share
BitcoinEthereumNews2026/01/22 06:54
Dogecoin, Shiba Inu & XYZVerse: Three Meme Coin Paths — Stability, Gradual Growth & Explosive Upside?

Dogecoin, Shiba Inu & XYZVerse: Three Meme Coin Paths — Stability, Gradual Growth & Explosive Upside?

Three meme tokens are taking unique routes in the market. One is holding firm, another is making slow gains, and a third is causing excitement with its big jumps. What sets these coins apart and makes each path interesting? The coming analysis looks at how these strategies could shape their future and what it might mean for traders. From Meme to Mainstream: Is Dogecoin Ready for Another Lift-Off? Dogecoin burst onto the scene in 2013 with a grinning Shiba Inu and a shrug. Its creators, Billy Marcus and Jackson Palmer, wanted a light-hearted twist on serious crypto. They set no hard limit on coins; in fact 10,000 fresh DOGE roll out every minute. What began as a joke became a juggernaut. Social media rallies, led by Elon Musk, pushed its worth above $50 billion in 2021, planting it in the top ten. The surge proved one thing: an online crowd can turn a meme into a market force. Under the hood DOGE runs on the same proof-of-work idea as Bitcoin, yet blocks clear faster and fees stay tiny. That makes tipping gamers, streamers, and friends quick and cheap. The endless supply fuels spending but also keeps a lid on scarcity. In today’s cycle Bitcoin’s rebound has traders hunting for lagging plays. New meme coins flash brighter, yet many fade fast. Dogecoin still owns the biggest fan club and sits on every major exchange, giving it staying power. If utility grows—or another Musk tweet lands—momentum could return in a hurry. Shiba Inu: The Meme Dog That Sniffed Out a Spot on Ethereum Shiba Inu burst onto the scene in 2020, barking at Dogecoin’s heels. Built on Ethereum, it plugs into a huge network of apps and wallets. Its maker, known only as Ryoshi, unleashed one quadrillion tokens. Half went to Vitalik Buterin, who later gave much away and burned the rest. That bold move grabbed headlines and trust. At the same time, it showed the coin was more than a joke. Today, SHIB powers ShibaSwap, a place to trade tokens without a middleman. Soon, holders may vote on new changes and even mint art pieces called NFTs. This wider plan gives SHIB tools that Dogecoin still lacks. The market cycle now rewards coins with clear stories and active teams. Meme coins often ride big waves, and Ethereum-based ones get extra attention because they fit with popular chains like Uniswap and OpenSea. SHIB also has a huge, vocal fan base that can drive fast moves. Prices are still far below last year’s peak, so some see room for a fresh run if the next bull phase appears. Demand for $XYZ Surges As Its Capitalization Hits the $15M Milestone XYZVerse ($XYZ), recently recognized as Best NEW Meme Project, is drawing significant attention thanks to its standout concept. It is the first ever meme coin that merges the thrill of sports and the innovation of web3. Unlike typical meme coins, XYZVerse offers real utility and a clear roadmap for long-term development. It plans to launch gamified products and form partnerships with big sports teams and platforms. Notably, XYZVerse recently delivered on one of its goals ahead of schedule by partnering with bookmaker.XYZ, the first fully on-chain decentralized sportsbook and casino. As a bonus, $XYZ token holders receive exclusive perks on their first bet. Price Dynamics and Listing Plans During its presale phase, the $XYZ token has shown steady growth. Since its launch, the price has increased from $0.0001 to $0.0055, with the next stage set to push it further to $0.0056. With an anticipated listing price of $0.10, the token is set to launch on leading CEXs and DEXs. The projected listing price of $0.10 could generate up to 1,000x returns for early investors, provided the project secures the necessary market capitalization. So far, more than $15 million has been raised, and the presale is approaching another significant milestone of $20 million. This fast progress is signaling strong demand from both retail and institutional investors. Champions Get Rewarded In XYZVerse, the community calls the plays. Active contributors are rewarded with airdropped XYZ tokens for their dedication. It’s a game where the most passionate players win big. The Road to Victory With solid tokenomics, strategic CEX and DEX listings, and consistent token burns, $XYZ is built for a championship run. Every play is designed to push it further, to strengthen its price, and to rally a community of believers who believe this is the start of something legendary. Airdrops, Rewards, and More - Join XYZVerse to Unlock All the Benefits Conclusion DOGE offers steadiness, SHIB moves upward in steps, yet XYZVerse (XYZ) blends sports and memes, presale live, community-led, aiming to beat past 17,000% stars in the 2025 bull run. You can find more information about XYZVerse (XYZ) here: https://xyzverse.io/, https://t.me/xyzverse, https://x.com/xyz_verse   Disclaimer: This article is provided for informational purposes only. It is not offered or intended to be used as legal, tax, investment, financial, or other advice.
Share
Coinstats2025/09/20 16:32
YZi Labs invests in Ethena Labs to support the expansion of the USDe ecosystem

YZi Labs invests in Ethena Labs to support the expansion of the USDe ecosystem

PANews reported on September 19th that YZi Labs announced it has deepened its holdings in Ethena Labs and will continue its strategic support for the development of the USDe ecosystem. USDe is the fastest-growing and third-largest dollar-denominated crypto asset in history, with a current circulating supply exceeding $ 13 billion. YZi Labs' support will promote the expansion of USDe's application across centralized and decentralized platforms, and will contribute to the development of new products : USDtb (a fiat-backed stablecoin) and Converge (an institutional settlement layer).
Share
PANews2025/09/19 21:07