In this section, we introduce Theorem 2, an important theoretical extension showing that merely giving a Transformer additional unguided computing space does not overcome the "local reasoning barrier." In the context of a "agnostic scratchpad," the model is permitted to produce a polynomial-length sequence of intermediate tokens (a scratchpad) with no oversight over their content. This theorem generalizes the earlier finding (Theorem 1). The high-locality "cycle task," which requires the model to identify if three particular nodes in a graph belong to the same cycle, is still the task at hand.In this section, we introduce Theorem 2, an important theoretical extension showing that merely giving a Transformer additional unguided computing space does not overcome the "local reasoning barrier." In the context of a "agnostic scratchpad," the model is permitted to produce a polynomial-length sequence of intermediate tokens (a scratchpad) with no oversight over their content. This theorem generalizes the earlier finding (Theorem 1). The high-locality "cycle task," which requires the model to identify if three particular nodes in a graph belong to the same cycle, is still the task at hand.

Research from Apple and EPFL Explains Why AI Models Can’t Truly “Reason” Yet

Abstract and 1. Introduction

1.1 Syllogisms composition

1.2 Hardness of long compositions

1.3 Hardness of global reasoning

1.4 Our contributions

  1. Results on the local reasoning barrier

    2.1 Defining locality and auto-regressive locality

    2.2 Transformers require low locality: formal results

    2.3 Agnostic scratchpads cannot break the locality

  2. Scratchpads to break the locality

    3.1 Educated scratchpad

    3.2 Inductive Scratchpads

  3. Conclusion, Acknowledgments, and References

A. Further related literature

B. Additional experiments

C. Experiment and implementation details

D. Proof of Theorem 1

E. Comment on Lemma 1

F. Discussion on circuit complexity connections

G. More experiments with ChatGPT

D Proof of Theorem 1

\

\

\ At this point, we are finally ready to prove Theorem 1 as follows.

\

\

\

\

\

D.1 Extension to agnostic scratchpads

Theorem 1 can also be generalised to Transformers trained with agnostic scratchpads in order to get the following.

\ Theorem 2. Let G be a directed graph which consists of a cycle of length 3n with probability 2/3 and 3 cycles of length n otherwise. Next, if there are 3 cycles pick one vertex from each and if there is one cycle pick three vertices that are each n edges apart. Then, label uniformly at random these vertices with a0, b0, c0. Next, number every other vertex by the distance from one of these three to it, and for each i, label uniformly at random the vertices at distance i by ai, bi, and ci and store in X the edges between ai − 1, bi − 1, ci − 1 and ai, bi, ci; i.e.

\

\ where e(v) represents the vertex that v’s edge points to, all of the instances of i or i + 1 should have the appropriate value substituted in and the symbols in black should be used exactly as stated. See Figure 2 for an example. Finally, let Y report whether a0, b0, c_0 are in the same cycle or not. Now, consider training a T-regular neural network with a scratchpad of polynomial length on (X, Y ) generated in this manner. For any given (X, Y ), we will regard the net’s loss on (X, Y ) as the expectation over all possible scratchpads that it might generate on X of the loss of its eventual output. If we train it on (X, Y ) using population[14] gradient descent with polynomial hyperparameters[15] and a differentiable loss function then the network fails to weakly learn to compute Y.

\ The proof of this theorem is not meaningfully different from the proof of the previous version, but for completeness we include it below.

\

\

\

\ That in turn means that

\

\

E Comment on Lemma 1

For S such that |S| < n, X[S] is independent of Y , since the distribution of such subsets of edges is the same for both classes.

\ Let S be such that |S| = n. Let ZS be the ternary random variable that records whether there is a cycle or an open path on S. Then,

\ Thus

\

\ Therefore, even for sets of size n, the mutual information is exponentially low, implying that loc(D) is greater than n + 1

\

:::info Authors:

(1) Emmanuel Abbe, Apple and EPFL;

(2) Samy Bengio, Apple;

(3) Aryo Lotf, EPFL;

(4) Colin Sandon, EPFL;

(5) Omid Saremi, Apple.

:::


:::info This paper is available on arxiv under CC BY 4.0 license.

:::

[14] This would also be true for batch GD with batches of size n c with c chosen as a function of the other hyperparameters.

\ [15] I.e., either polynomial learning rate, polynomial clipping [12, 31], and weights stored using a logarithmic number of bits of precision and random rounding: for a < b < c if b needs to be rounded to a or c then it rounds to c with probability (b − a)/(c − a), or with polynomial learning rate, polynomial clipping and polynomial noise added to the gradients.

Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

5 High-Growth Cryptos for 2025: BullZilla Tops the Charts as the Best 100x Crypto Presale

5 High-Growth Cryptos for 2025: BullZilla Tops the Charts as the Best 100x Crypto Presale

BullZilla, World Liberty Financial, MoonBull, La Culex, and Polkadot (DOT) are taking the spotlight among emerging and established crypto projects […] The post 5 High-Growth Cryptos for 2025: BullZilla Tops the Charts as the Best 100x Crypto Presale appeared first on Coindoo.
Share
Coindoo2025/10/18 08:15
Over $145M Evaporates In Brutal Long Squeeze

Over $145M Evaporates In Brutal Long Squeeze

The post Over $145M Evaporates In Brutal Long Squeeze appeared on BitcoinEthereumNews.com. Crypto Futures Liquidations: Over $145M Evaporates In Brutal Long Squeeze
Share
BitcoinEthereumNews2026/01/16 11:35
Non-Opioid Painkillers Have Struggled–Cannabis Drugs Might Be The Solution

Non-Opioid Painkillers Have Struggled–Cannabis Drugs Might Be The Solution

The post Non-Opioid Painkillers Have Struggled–Cannabis Drugs Might Be The Solution appeared on BitcoinEthereumNews.com. In this week’s edition of InnovationRx, we look at possible pain treatments from cannabis, risks of new vaccine restrictions, virtual clinical trials at the Mayo Clinic, GSK’s $30 billion U.S. manufacturing commitment, and more. To get it in your inbox, subscribe here. Despite their addictive nature, opioids continue to be a major treatment for pain due to a lack of effective alternatives. In an effort to boost new drugs, the FDA released new guidelines for non-opioid painkillers last week. But making these drugs hasn’t been easy. Vertex Pharmaceuticals received FDA approval for its non-opioid Journavx in January, then abandoned a next generation drug after a failed clinical trial earlier this summer. Acadia similarly abandoned a promising candidate after a failed trial in 2022. One possible basis for non-opioids might be cannabis. Earlier this year, researchers at Washington University at St. Louis and Stanford published a study showing that a cannabis-derived compound successfully eased pain in mice with minimal side effects. Munich-based pharmaceutical company Vertanical is perhaps the furthest along in this quest. It is developing a cannabinoid-based extract to treat chronic pain it hopes will soon become an approved medicine, first in the European Union and eventually in the United States. The drug, currently called Ver-01, packs enough low levels of cannabinoids (including THC) to relieve pain, but not so much that patients get high. Founder Clemens Fischer, a 50-year-old medical doctor and serial pharmaceutical and supplement entrepreneur, hopes it will become the first cannabis-based painkiller prescribed by physicians and covered by insurance. Fischer founded Vertanical, with his business partner Madlena Hohlefelder, in 2017, and has invested more than $250 million of his own money in it. With a cannabis cultivation site and drug manufacturing plant in Denmark, Vertanical has successfully passed phase III clinical trials in Germany and expects…
Share
BitcoinEthereumNews2025/09/18 05:26