Proposes BSGAL, a Generative Active Learning algorithm that uses gradient cache to filter unlimited synthetic data.Proposes BSGAL, a Generative Active Learning algorithm that uses gradient cache to filter unlimited synthetic data.

Formalizing Generative Active Learning for Instance Segmentation

Abstract and 1 Introduction

  1. Related work

    2.1. Generative Data Augmentation

    2.2. Active Learning and Data Analysis

  2. Preliminary

  3. Our method

    4.1. Estimation of Contribution in the Ideal Scenario

    4.2. Batched Streaming Generative Active Learning

  4. Experiments and 5.1. Offline Setting

    5.2. Online Setting

  5. Conclusion, Broader Impact, and References

    \

A. Implementation Details

B. More ablations

C. Discussion

D. Visualization

3. Preliminary

\ As shown in Algorithm 1, it displays the overall process of our baseline, which does not consider the different impacts each sample could impose on the model. In other words, our aim is to identify a function, ϕ(g, θ), capable of gauging the contribution of any given generated sample g ∈ G to the current model f. Then, via this scoring mechanism, we can filter and retain the most helpful samples for the model and simultaneously discard those that are useless or even harmful to the model.

\

:::info Authors:

(1) Muzhi Zhu, with equal contribution from Zhejiang University, China;

(2) Chengxiang Fan, with equal contribution from Zhejiang University, China;

(3) Hao Chen, Zhejiang University, China ([email protected]);

(4) Yang Liu, Zhejiang University, China;

(5) Weian Mao, Zhejiang University, China and The University of Adelaide, Australia;

(6) Xiaogang Xu, Zhejiang University, China;

(7) Chunhua Shen, Zhejiang University, China ([email protected]).

:::


:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.