Ripple and Amazon Web Services are collaborating on advanced xrpl monitoring using Amazon Bedrock, aiming to compress days of network analysis into minutes. RippleRipple and Amazon Web Services are collaborating on advanced xrpl monitoring using Amazon Bedrock, aiming to compress days of network analysis into minutes. Ripple

AWS and Ripple explore xrpl monitoring with Amazon Bedrock generative AI

xrpl monitoring

Ripple and Amazon Web Services are collaborating on advanced xrpl monitoring using Amazon Bedrock, aiming to compress days of network analysis into minutes.

Ripple and AWS target faster insight into XRPL operations

Amazon Web Services and Ripple are researching how Amazon Bedrock and its generative artificial intelligence capabilities can improve how the XRP Ledger is monitored and analyzed, according to people familiar with the initiative. The partners want to apply AI to the ledger’s system logs to reduce the time needed to investigate network issues and operational anomalies.

Some internal assessments from AWS engineers suggest that processes which once required several days can now be completed in just 2-3 minutes. Moreover, automated log inspection could free platform teams to focus on feature development instead of routine troubleshooting. That said, the approach depends on robust data pipelines and accurate interpretation of complex logs.

Decentralized XRPL architecture and log complexity

XRPL is a decentralized layer-1 blockchain supported by a global network of independent node operators. The system has been live since 2012 and is written in C++, a design choice that enables high performance but generates intricate and often cryptic system logs. However, that same speed-focused architecture increases the volume and complexity of operational data.

According to Ripple‘s documents, XRPL runs more than 900 nodes distributed across universities, blockchain institutions, wallet providers, and financial firms. This decentralized structure improves resilience, security, and scalability. However, it significantly complicates real-time visibility into how the network behaves, especially during regional incidents or rare protocol edge cases.

Scale of logging challenges across the XRP Ledger

Each XRPL node produces between 30 and 50 gigabytes of log data, resulting in an estimated 2 to 2.5 petabytes across the network. When incidents occur, engineers must manually sift through these files to identify anomalies and trace them back to the underlying C++ code. Moreover, cross-team coordination is required whenever protocol internals are involved.

A single investigation can stretch to two or three days because it requires collaboration between platform engineers and a limited pool of C++ specialists who understand the ledger’s internals. Platform teams often wait on those experts before they can respond to incidents or resume feature development. That said, this bottleneck has become more pronounced as the codebase has grown older and larger.

Real-world incident highlights need for automation

According to AWS technicians speaking at a recent conference, a Red Sea subsea cable cut once affected connectivity for some node operators in the Asia-Pacific region. Ripple’s platform team had to collect logs from affected operators and process tens of gigabytes per node before meaningful analysis could begin. However, manual triage at that scale slows incident resolution.

Solutions architect Vijay Rajagopal from AWS said the managed platform that hosts artificial intelligence agents, known as Amazon Bedrock, can reason over large datasets. Applying these models to XRP Ledger logs would automate pattern recognition and behavioral analysis, cutting the time currently taken by manual inspectors. Moreover, such tooling could standardize incident response across different operators.

Amazon Bedrock as an interpretive layer for XRPL logs

Rajagopal described Amazon Bedrock as an interpretive layer between raw system logs and human operators. It can scan cryptic entries line by line while engineers query AI models that understand the structure and expected behavior of the XRPL system. This approach is central to the partners’ vision for more intelligent xrpl monitoring at scale.

According to the architect, AI agents can be tailored to the protocol’s architecture so that they recognize normal operational patterns versus potential failures. However, the models still depend on curated training data and accurate mappings between logs, code, and protocol specifications. That said, combining these elements promises a more contextual view of node health.

AWS Lambda-driven pipeline for log ingestion

Rajagopal outlined the end-to-end workflow, beginning with raw logs generated by validators, hubs, and client handlers on XRPL. The logs are first transferred into Amazon S3 through a dedicated workflow built with GitHub tools and AWS Systems Manager. Moreover, this design centralizes data from disparate node operators.

Once data reaches S3, event triggers activate AWS Lambda functions that inspect each file to determine byte ranges for individual chunks, aligned with log line boundaries and predefined chunk sizes. The resulting segments are then sent to Amazon SQS to distribute processing at scale and enable parallel handling of large volumes.

A separate log processor Lambda function retrieves only the relevant chunks from S3 based on chunk metadata it receives. It extracts log lines and associated metadata before forwarding them to Amazon CloudWatch, where entries can be indexed and analyzed. However, accuracy at this stage is critical because downstream AI reasoning depends on correct segmentation.

Linking logs, code, and standards for deeper reasoning

Beyond the log ingestion solution, the same system also processes the XRPL codebase across two primary repositories. One repository contains the core server software for the XRP Ledger, while the other defines standards and specifications that govern interoperability with applications built on top of the network. Moreover, both repositories contribute essential context for understanding node behavior.

Updates from these repositories are automatically detected and scheduled via a serverless event bus called Amazon EventBridge. On a defined cadence, the pipeline pulls the latest code and documentation from GitHub, versions the data, and stores it in Amazon S3 for further processing. That said, versioning is vital to ensure AI responses reflect the correct software release.

AWS engineers argued that without a clear understanding of how the protocol is supposed to behave, raw logs are often insufficient to resolve node issues and downtimes. By linking logs to standards and server software that define XRPL’s behavior, AI agents can provide more accurate, contextual explanations of anomalies and suggest targeted remediation paths.

Implications for AI-driven blockchain observability

The collaboration between Ripple and AWS showcases how gen AI for blockchain observability could evolve beyond simple metrics dashboards. Automated reasoning over logs, code, and specifications promises shorter incident timelines and clearer root-cause analysis. However, operators will still need to validate AI-driven recommendations before applying changes in production.

If Amazon’s Bedrock-based pipeline delivers the claimed 2-3 minute turnaround on investigations, it could reshape how large-scale blockchain networks manage reliability. Moreover, a repeatable pipeline combining S3, Lambda, SQS, CloudWatch, and EventBridge offers a template that other protocols might adapt for their own aws log analysis and operational intelligence needs.

In summary, Ripple and AWS are experimenting with AI-native infrastructure to turn XRPL’s extensive C++ logs and code history into a faster, more actionable signal for engineers, potentially setting a new bar for blockchain monitoring and incident response.

Market Opportunity
Sleepless AI Logo
Sleepless AI Price(AI)
$0.04021
$0.04021$0.04021
-1.32%
USD
Sleepless AI (AI) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Grayscale Registers New HYPE and BNB ETFs in Delaware

Grayscale Registers New HYPE and BNB ETFs in Delaware

The post Grayscale Registers New HYPE and BNB ETFs in Delaware appeared on BitcoinEthereumNews.com. Key Points: Grayscale registers ETFs in Delaware. Market anticipates
Share
BitcoinEthereumNews2026/01/12 06:17
Fed Decides On Interest Rates Today—Here’s What To Watch For

Fed Decides On Interest Rates Today—Here’s What To Watch For

The post Fed Decides On Interest Rates Today—Here’s What To Watch For appeared on BitcoinEthereumNews.com. Topline The Federal Reserve on Wednesday will conclude a two-day policymaking meeting and release a decision on whether to lower interest rates—following months of pressure and criticism from President Donald Trump—and potentially signal whether additional cuts are on the way. President Donald Trump has urged the central bank to “CUT INTEREST RATES, NOW, AND BIGGER” than they might plan to. Getty Images Key Facts The central bank is poised to cut interest rates by at least a quarter-point, down from the 4.25% to 4.5% range where they have been held since December to between 4% and 4.25%, as Wall Street has placed 100% odds of a rate cut, according to CME’s FedWatch, with higher odds (94%) on a quarter-point cut than a half-point (6%) reduction. Fed governors Christopher Waller and Michelle Bowman, both Trump appointees, voted in July for a quarter-point reduction to rates, and they may dissent again in favor of a large cut alongside Stephen Miran, Trump’s Council of Economic Advisers’ chair, who was sworn in at the meeting’s start on Tuesday. It’s unclear whether other policymakers, including Kansas City Fed President Jeffrey Schmid and St. Louis Fed President Alberto Musalem, will favor larger cuts or opt for no reduction. Fed Chair Jerome Powell said in his Jackson Hole, Wyoming, address last month the central bank would likely consider a looser monetary policy, noting the “shifting balance of risks” on the U.S. economy “may warrant adjusting our policy stance.” David Mericle, an economist for Goldman Sachs, wrote in a note the “key question” for the Fed’s meeting is whether policymakers signal “this is likely the first in a series of consecutive cuts” as the central bank is anticipated to “acknowledge the softening in the labor market,” though they may not “nod to an October cut.” Mericle said he…
Share
BitcoinEthereumNews2025/09/18 00:23
FCA komt in 2026 met aangepaste cryptoregels voor Britse markt

FCA komt in 2026 met aangepaste cryptoregels voor Britse markt

De Britse financiële waakhond, de FCA, komt in 2026 met nieuwe regels speciaal voor crypto bedrijven. Wat direct opvalt: de toezichthouder laat enkele klassieke financiële verplichtingen los om beter aan te sluiten op de snelle en grillige wereld van digitale activa. Tegelijkertijd wordt er extra nadruk gelegd op digitale beveiliging,... Het bericht FCA komt in 2026 met aangepaste cryptoregels voor Britse markt verscheen het eerst op Blockchain Stories.
Share
Coinstats2025/09/18 00:33