The post NVIDIA Enhances Training Throughput with NeMo-RL’s Megatron-Core appeared on BitcoinEthereumNews.com. Ted Hisokawa Aug 20, 2025 16:26 NVIDIA introduces Megatron-Core support in NeMo-RL v0.3, optimizing training throughput for large models with GPU-optimized techniques and enhanced parallelism. NVIDIA has unveiled the latest iteration of its NeMo-RL framework, version 0.3, which incorporates support for Megatron-Core. This enhancement aims to optimize training throughput for large language models by leveraging GPU-optimized techniques and advanced parallelism strategies, according to NVIDIA’s official blog. Challenges with Previous Backends The initial release of NVIDIA NeMo-RL utilized PyTorch DTensor (FSDP2), offering native integration with the HuggingFace ecosystem and enabling quick experimentation through PyTorch’s native parallelisms. However, as model sizes increased to hundreds of billions of parameters, the DTensor path proved inadequate due to significant recompute overhead and lack of optimized NVIDIA CUDA kernels, leading to inefficient step times. Introducing Megatron-Core The Megatron-Core library addresses these limitations by offering a more efficient solution for training extensive models. It employs a 6D parallelism strategy to enhance communication and computation patterns, supporting various model architectures. This backend enables seamless training of massive language models, enhancing throughput and performance significantly. Getting Started with Megatron-Core Implementing Megatron-based training involves adding specific configurations to the YAML setup. The process is streamlined by NeMo-RL, which handles complex tuning automatically, presenting users with straightforward configuration options. This makes the adoption of Megatron-Core more accessible for developers, allowing them to focus on optimizing their model training processes. Performance Improvements Megatron-based training supports both dense and Mixture of Experts (MoE) models. Performance tests have demonstrated superior training performance with Megatron-Core compared to PyTorch DTensor, as shown in various model configurations like Llama 3.1-8B and 70B. The enhancements are evident in faster step times and improved convergence properties. Additional Features and Future Prospects NeMo-RL v0.3 introduces features such as async rollouts and non-colocated… The post NVIDIA Enhances Training Throughput with NeMo-RL’s Megatron-Core appeared on BitcoinEthereumNews.com. Ted Hisokawa Aug 20, 2025 16:26 NVIDIA introduces Megatron-Core support in NeMo-RL v0.3, optimizing training throughput for large models with GPU-optimized techniques and enhanced parallelism. NVIDIA has unveiled the latest iteration of its NeMo-RL framework, version 0.3, which incorporates support for Megatron-Core. This enhancement aims to optimize training throughput for large language models by leveraging GPU-optimized techniques and advanced parallelism strategies, according to NVIDIA’s official blog. Challenges with Previous Backends The initial release of NVIDIA NeMo-RL utilized PyTorch DTensor (FSDP2), offering native integration with the HuggingFace ecosystem and enabling quick experimentation through PyTorch’s native parallelisms. However, as model sizes increased to hundreds of billions of parameters, the DTensor path proved inadequate due to significant recompute overhead and lack of optimized NVIDIA CUDA kernels, leading to inefficient step times. Introducing Megatron-Core The Megatron-Core library addresses these limitations by offering a more efficient solution for training extensive models. It employs a 6D parallelism strategy to enhance communication and computation patterns, supporting various model architectures. This backend enables seamless training of massive language models, enhancing throughput and performance significantly. Getting Started with Megatron-Core Implementing Megatron-based training involves adding specific configurations to the YAML setup. The process is streamlined by NeMo-RL, which handles complex tuning automatically, presenting users with straightforward configuration options. This makes the adoption of Megatron-Core more accessible for developers, allowing them to focus on optimizing their model training processes. Performance Improvements Megatron-based training supports both dense and Mixture of Experts (MoE) models. Performance tests have demonstrated superior training performance with Megatron-Core compared to PyTorch DTensor, as shown in various model configurations like Llama 3.1-8B and 70B. The enhancements are evident in faster step times and improved convergence properties. Additional Features and Future Prospects NeMo-RL v0.3 introduces features such as async rollouts and non-colocated…

NVIDIA Enhances Training Throughput with NeMo-RL’s Megatron-Core



Ted Hisokawa
Aug 20, 2025 16:26

NVIDIA introduces Megatron-Core support in NeMo-RL v0.3, optimizing training throughput for large models with GPU-optimized techniques and enhanced parallelism.



NVIDIA Enhances Training Throughput with NeMo-RL's Megatron-Core

NVIDIA has unveiled the latest iteration of its NeMo-RL framework, version 0.3, which incorporates support for Megatron-Core. This enhancement aims to optimize training throughput for large language models by leveraging GPU-optimized techniques and advanced parallelism strategies, according to NVIDIA’s official blog.

Challenges with Previous Backends

The initial release of NVIDIA NeMo-RL utilized PyTorch DTensor (FSDP2), offering native integration with the HuggingFace ecosystem and enabling quick experimentation through PyTorch’s native parallelisms. However, as model sizes increased to hundreds of billions of parameters, the DTensor path proved inadequate due to significant recompute overhead and lack of optimized NVIDIA CUDA kernels, leading to inefficient step times.

Introducing Megatron-Core

The Megatron-Core library addresses these limitations by offering a more efficient solution for training extensive models. It employs a 6D parallelism strategy to enhance communication and computation patterns, supporting various model architectures. This backend enables seamless training of massive language models, enhancing throughput and performance significantly.

Getting Started with Megatron-Core

Implementing Megatron-based training involves adding specific configurations to the YAML setup. The process is streamlined by NeMo-RL, which handles complex tuning automatically, presenting users with straightforward configuration options. This makes the adoption of Megatron-Core more accessible for developers, allowing them to focus on optimizing their model training processes.

Performance Improvements

Megatron-based training supports both dense and Mixture of Experts (MoE) models. Performance tests have demonstrated superior training performance with Megatron-Core compared to PyTorch DTensor, as shown in various model configurations like Llama 3.1-8B and 70B. The enhancements are evident in faster step times and improved convergence properties.

Additional Features and Future Prospects

NeMo-RL v0.3 introduces features such as async rollouts and non-colocated generation, expanding its capabilities. Looking ahead, NVIDIA plans to support larger MOE models and introduce further optimizations, including FP8 generation support and non-colocated generation with Megatron-Core.

The advancements in NeMo-RL with Megatron-Core backend mark a significant step forward in optimizing reinforcement learning for large-scale language models, ensuring both efficiency and scalability in model training.

Image source: Shutterstock


Source: https://blockchain.news/news/nvidia-enhances-training-throughput-nemo-rl-megatron-core

Market Opportunity
Moonveil Logo
Moonveil Price(MORE)
$0.002553
$0.002553$0.002553
+2.07%
USD
Moonveil (MORE) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Will Bitcoin Soar or Stumble Next?

Will Bitcoin Soar or Stumble Next?

The post Will Bitcoin Soar or Stumble Next? appeared on BitcoinEthereumNews.com. With the Federal Reserve’s forthcoming decision on interest rates causing speculation, Bitcoin‘s value remains stable at $115,400. China’s surprising maneuvers in the financial landscape have shifted expected market trends, prompting deeper examination by investors into analysts’ past evaluations regarding rate reductions. Continue Reading:Will Bitcoin Soar or Stumble Next? Source: https://en.bitcoinhaber.net/will-bitcoin-soar-or-stumble-next
Share
BitcoinEthereumNews2025/09/18 03:09
Cardano Latest News, Pi Network Price Prediction and The Best Meme Coin To Buy In 2025

Cardano Latest News, Pi Network Price Prediction and The Best Meme Coin To Buy In 2025

The post Cardano Latest News, Pi Network Price Prediction and The Best Meme Coin To Buy In 2025 appeared on BitcoinEthereumNews.com. Pi Network is rearing its head, and Cardano is trying to recover from a downtrend. But the go to option this fall is Layer Brett, a meme coin with utility baked into it. $LBRETT’s presale is not only attractive, but is magnetic due to high rewards and the chance to make over 100x gains. Layer Brett Is Loading: Join or You’re Wrecked The crypto crowd loves to talk big numbers, but here’s one that’s impossible to ignore: Layer 2 markets are projected to process more than $10 trillion per year by 2027. That tidal wave is building right now — and Layer Brett is already carving out space to ride it. The presale price? A tiny $0.0058. That’s launchpad level, the kind of entry point that fuels 100x gains if momentum kicks in. Latecomers will scroll through charts in regret while early entrants pocket the spoils. Layer Brett is more than another Layer 2 solution. It’s crypto tech wrapped in meme energy, and that mix is lethal in the best way. Blazing-fast transactions, negligible fees, and staking rewards that could make traditional finance blush. Stakers lock in a staggering 700% APY. But every new wallet that joins cuts into that yield, so hesitation is expensive. And let’s not forget the kicker — a massive $1 million giveaway fueling even more hype around the presale. Combine that with a decentralized design, and you’ve got something that stands out in a space overcrowded with promises. This isn’t some slow-burning project hoping to survive. Layer Brett is engineered to explode. It’s raw, it’s loud, it’s built for the degens who understand that timing is everything. At $0.0058, you’re either in early — or you’re out forever. Is PI the People’s Currency? Pi Network’s open mainnet unlocks massive potential, with millions of users completing…
Share
BitcoinEthereumNews2025/09/18 06:14
Another Nasdaq-Listed Company Announces Massive Bitcoin (BTC) Purchase! Becomes 14th Largest Company! – They’ll Also Invest in Trump-Linked Altcoin!

Another Nasdaq-Listed Company Announces Massive Bitcoin (BTC) Purchase! Becomes 14th Largest Company! – They’ll Also Invest in Trump-Linked Altcoin!

The post Another Nasdaq-Listed Company Announces Massive Bitcoin (BTC) Purchase! Becomes 14th Largest Company! – They’ll Also Invest in Trump-Linked Altcoin! appeared on BitcoinEthereumNews.com. While the number of Bitcoin (BTC) treasury companies continues to increase day by day, another Nasdaq-listed company has announced its purchase of BTC. Accordingly, live broadcast and e-commerce company GD Culture Group announced a $787.5 million Bitcoin purchase agreement. According to the official statement, GD Culture Group announced that they have entered into an equity agreement to acquire assets worth $875 million, including 7,500 Bitcoins, from Pallas Capital Holding, a company registered in the British Virgin Islands. GD Culture will issue approximately 39.2 million shares of common stock in exchange for all of Pallas Capital’s assets, including $875.4 million worth of Bitcoin. GD Culture CEO Xiaojian Wang said the acquisition deal will directly support the company’s plan to build a strong and diversified crypto asset reserve while capitalizing on the growing institutional acceptance of Bitcoin as a reserve asset and store of value. With this acquisition, GD Culture is expected to become the 14th largest publicly traded Bitcoin holding company. The number of companies adopting Bitcoin treasury strategies has increased significantly, exceeding 190 by 2025. Immediately after the deal was announced, GD Culture shares fell 28.16% to $6.99, their biggest drop in a year. As you may also recall, GD Culture announced in May that it would create a cryptocurrency reserve. At this point, the company announced that they plan to invest in Bitcoin and President Donald Trump’s official meme coin, TRUMP token, through the issuance of up to $300 million in stock. *This is not investment advice. Follow our Telegram and Twitter account now for exclusive news, analytics and on-chain data! Source: https://en.bitcoinsistemi.com/another-nasdaq-listed-company-announces-massive-bitcoin-btc-purchase-becomes-14th-largest-company-theyll-also-invest-in-trump-linked-altcoin/
Share
BitcoinEthereumNews2025/09/18 04:06