Go offers composition through embedding, interfaces without explicit implementation, and clear rules for methods. The difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.Go offers composition through embedding, interfaces without explicit implementation, and clear rules for methods. The difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.

Clean Code in Go (Part 2): Structs, Methods, and Composition Over Inheritance

2025/11/10 04:06

This is the second article in my clean code series. You can read the first part here.

https://hackernoon.com/clean-code-functions-and-error-handling-in-go-from-chaos-to-clarity-part-1?embedable=true

Introduction: Why OOP in Go Isn't What You Think

I've seen hundreds of developers try to write Go like Java, creating inheritance hierarchies that don't exist and fighting the language every step of the way. "Go has no classes!" — the first shock for developers with Java/C# background. The second — "How to live without inheritance?!". Relax, Go offers something better: composition through embedding, interfaces without explicit implementation, and clear rules for methods.

Common struct/method mistakes I've observed:

  • Using value receivers with mutexes: ~25% cause data races
  • Mixing receiver types: ~35% of struct methods
  • Creating getters/setters for everything: ~60% of structs
  • Trying to implement inheritance: ~40% of new Go developers

After 6 years of working with Go, I can say: the difference between fighting the language and flowing with it usually comes down to understanding structs and methods properly.

Receivers: The Go Developer's Main Dilemma

Value vs Pointer Receiver

This is question #1 in interviews and code reviews. Here's a simple rule that covers 90% of cases:

// Value receiver - for immutable methods func (u User) FullName() string { return fmt.Sprintf("%s %s", u.FirstName, u.LastName) } // Pointer receiver - when changing state func (u *User) SetEmail(email string) error { if !isValidEmail(email) { return ErrInvalidEmail } u.Email = email u.UpdatedAt = time.Now() return nil }

Rules for Choosing a Receiver

type Account struct { ID string Balance decimal.Decimal mutex sync.RWMutex } // Rule 1: If even one method requires a pointer receiver, // ALL methods should use pointer receiver (consistency) // BAD: mixed receivers func (a Account) GetBalance() decimal.Decimal { // value receiver return a.Balance } func (a *Account) Deposit(amount decimal.Decimal) { // pointer receiver a.Balance = a.Balance.Add(amount) } // GOOD: consistent receivers func (a *Account) GetBalance() decimal.Decimal { a.mutex.RLock() defer a.mutex.RUnlock() return a.Balance } func (a *Account) Deposit(amount decimal.Decimal) error { if amount.LessThanOrEqual(decimal.Zero) { return ErrInvalidAmount } a.mutex.Lock() defer a.mutex.Unlock() a.Balance = a.Balance.Add(amount) return nil }

When to Use Pointer Receiver

  1. Method modifies state
  2. Struct contains mutex (otherwise it will be copied!)
  3. Large struct (avoid copying)
  4. Consistency (if at least one method requires pointer)

// Struct with mutex ALWAYS pointer receiver type Cache struct { data map[string]interface{} mu sync.RWMutex } // DANGEROUS: value receiver copies mutex! func (c Cache) Get(key string) interface{} { // BUG! c.mu.RLock() // Locking a COPY of mutex defer c.mu.RUnlock() return c.data[key] } // CORRECT: pointer receiver func (c *Cache) Get(key string) interface{} { c.mu.RLock() defer c.mu.RUnlock() return c.data[key] }

Constructors and Factory Functions

Go doesn't have constructors in the classical sense, but there's the New* idiom:

// BAD: direct struct creation func main() { user := &User{ ID: generateID(), // What if we forget? Email: "[email protected]", // CreatedAt not set! } } // GOOD: factory function guarantees initialization func NewUser(email string) (*User, error) { if !isValidEmail(email) { return nil, ErrInvalidEmail } return &User{ ID: generateID(), Email: email, CreatedAt: time.Now(), UpdatedAt: time.Now(), }, nil }

Functional Options Pattern

For structs with many optional parameters:

type Server struct { host string port int timeout time.Duration maxConns int tls *tls.Config } // Option - function that modifies Server type Option func(*Server) // Factory functions for options func WithTimeout(timeout time.Duration) Option { return func(s *Server) { s.timeout = timeout } } func WithTLS(config *tls.Config) Option { return func(s *Server) { s.tls = config } } func WithMaxConnections(max int) Option { return func(s *Server) { s.maxConns = max } } // Constructor accepts required parameters and options func NewServer(host string, port int, opts ...Option) *Server { server := &Server{ host: host, port: port, timeout: 30 * time.Second, // defaults maxConns: 100, } // Apply options for _, opt := range opts { opt(server) } return server } // Usage - reads like prose server := NewServer("localhost", 8080, WithTimeout(60*time.Second), WithMaxConnections(1000), WithTLS(tlsConfig), )

Encapsulation Through Naming

Go has no private/public keywords. Instead — the case of the first letter:

type User struct { ID string // Public field (Exported) Email string password string // Private field (Unexported) createdAt time.Time // Private } // Public method func (u *User) SetPassword(pwd string) error { if len(pwd) < 8 { return ErrWeakPassword } hashed, err := bcrypt.GenerateFromPassword([]byte(pwd), bcrypt.DefaultCost) if err != nil { return fmt.Errorf("hash password: %w", err) } u.password = string(hashed) return nil } // Private helper func (u *User) validatePassword(pwd string) error { return bcrypt.CompareHashAndPassword([]byte(u.password), []byte(pwd)) } // Public method uses private one func (u *User) Authenticate(pwd string) error { if err := u.validatePassword(pwd); err != nil { return ErrInvalidCredentials } return nil }

Composition Through Embedding

Instead of inheritance, Go offers embedding. This is NOT inheritance, it's composition:

// Base struct type Person struct { FirstName string LastName string BirthDate time.Time } func (p Person) FullName() string { return fmt.Sprintf("%s %s", p.FirstName, p.LastName) } func (p Person) Age() int { return int(time.Since(p.BirthDate).Hours() / 24 / 365) } // Employee embeds Person type Employee struct { Person // Embedding - NOT inheritance! EmployeeID string Department string Salary decimal.Decimal } // Employee can override Person's methods func (e Employee) FullName() string { return fmt.Sprintf("%s (%s)", e.Person.FullName(), e.EmployeeID) } // Usage emp := Employee{ Person: Person{ FirstName: "John", LastName: "Doe", BirthDate: time.Date(1990, 1, 1, 0, 0, 0, 0, time.UTC), }, EmployeeID: "EMP001", Department: "Engineering", } fmt.Println(emp.FullName()) // John Doe (EMP001) - overridden method fmt.Println(emp.Age()) // 34 - method from Person fmt.Println(emp.FirstName) // John - field from Person

Embedding Interfaces

type Reader interface { Read([]byte) (int, error) } type Writer interface { Write([]byte) (int, error) } // ReadWriter embeds both interfaces type ReadWriter interface { Reader Writer } // Struct can embed interfaces for delegation type LoggedWriter struct { Writer // Embed interface logger *log.Logger } func (w LoggedWriter) Write(p []byte) (n int, err error) { n, err = w.Writer.Write(p) // Delegate to embedded Writer w.logger.Printf("Wrote %d bytes, err: %v", n, err) return n, err } // Usage var buf bytes.Buffer logged := LoggedWriter{ Writer: &buf, logger: log.New(os.Stdout, "WRITE: ", log.LstdFlags), } logged.Write([]byte("Hello, World!"))

Method Chaining (Builder Pattern)

type QueryBuilder struct { table string columns []string where []string orderBy string limit int } // Each method returns *QueryBuilder for chaining func NewQuery(table string) *QueryBuilder { return &QueryBuilder{ table: table, columns: []string{"*"}, } } func (q *QueryBuilder) Select(columns ...string) *QueryBuilder { q.columns = columns return q } func (q *QueryBuilder) Where(condition string) *QueryBuilder { q.where = append(q.where, condition) return q } func (q *QueryBuilder) OrderBy(column string) *QueryBuilder { q.orderBy = column return q } func (q *QueryBuilder) Limit(n int) *QueryBuilder { q.limit = n return q } func (q *QueryBuilder) Build() string { query := fmt.Sprintf("SELECT %s FROM %s", strings.Join(q.columns, ", "), q.table) if len(q.where) > 0 { query += " WHERE " + strings.Join(q.where, " AND ") } if q.orderBy != "" { query += " ORDER BY " + q.orderBy } if q.limit > 0 { query += fmt.Sprintf(" LIMIT %d", q.limit) } return query } // Usage - reads like SQL query := NewQuery("users"). Select("id", "name", "email"). Where("active = true"). Where("created_at > '2024-01-01'"). OrderBy("created_at DESC"). Limit(10). Build() // SELECT id, name, email FROM users WHERE active = true AND created_at > '2024-01-01' ORDER BY created_at DESC LIMIT 10

Thread-Safe Structs

// BAD: race condition type Counter struct { value int } func (c *Counter) Inc() { c.value++ // Race when accessed concurrently! } // GOOD: protected with mutex type SafeCounter struct { mu sync.Mutex value int } func (c *SafeCounter) Inc() { c.mu.Lock() defer c.mu.Unlock() c.value++ } func (c *SafeCounter) Value() int { c.mu.Lock() defer c.mu.Unlock() return c.value } // EVEN BETTER: using atomic type AtomicCounter struct { value atomic.Int64 } func (c *AtomicCounter) Inc() { c.value.Add(1) } func (c *AtomicCounter) Value() int64 { return c.value.Load() }

Anti-patterns and How to Avoid Them

1. Getters/Setters for All Fields

// BAD: Java-style getters/setters type User struct { name string age int } func (u *User) GetName() string { return u.name } func (u *User) SetName(name string) { u.name = name } func (u *User) GetAge() int { return u.age } func (u *User) SetAge(age int) { u.age = age } // GOOD: export fields or use methods with logic type User struct { Name string age int // private because validation needed } func (u *User) SetAge(age int) error { if age < 0 || age > 150 { return ErrInvalidAge } u.age = age return nil } func (u *User) Age() int { return u.age }

2. Huge Structs

// BAD: God Object type Application struct { Config Config Database *sql.DB Cache *redis.Client HTTPServer *http.Server GRPCServer *grpc.Server Logger *log.Logger Metrics *prometheus.Registry // ... 20 more fields } // GOOD: separation of concerns type App struct { config *Config services *Services servers *Servers } type Services struct { DB Database Cache Cache Auth Authenticator } type Servers struct { HTTP *HTTPServer GRPC *GRPCServer }

Practical Tips

  1. Always use constructors for structs with invariants
  2. Be consistent with receivers within a type
  3. Prefer composition over inheritance (which doesn't exist)
  4. Embedding is not inheritance, it's delegation
  5. Protect concurrent access with a mutex or channels
  6. Don't create getters/setters without necessity

Struct and Method Checklist

  • Constructor New* for complex initialization
  • Consistent receivers (all pointer or all value)
  • Pointer receiver for structs with a mutex
  • Private fields for encapsulation
  • Embedding instead of inheritance
  • Thread-safety when needed
  • Minimal getters/setters

Conclusion

Structs and methods in Go are an exercise in simplicity. No classes? Great, less complexity. No inheritance? Perfect, the composition is clearer. The key is not to drag patterns from other languages but to use Go idioms.

In the next article, we'll dive into interfaces — the real magic of Go. We'll discuss why small interfaces are better than large ones, what interface satisfaction means, and why "Accept interfaces, return structs" is the golden rule.

How do you handle the transition from OOP languages to Go's composition model? What patterns helped you the most? Share your experience in the comments!

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

The post Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council appeared on BitcoinEthereumNews.com. Michael Saylor and a group of crypto executives met in Washington, D.C. yesterday to push for the Strategic Bitcoin Reserve Bill (the BITCOIN Act), which would see the U.S. acquire up to 1M $BTC over five years. With Bitcoin being positioned yet again as a cornerstone of national monetary policy, many investors are turning their eyes to projects that lean into this narrative – altcoins, meme coins, and presales that could ride on the same wave. Read on for three of the best crypto projects that seem especially well‐suited to benefit from this macro shift:  Bitcoin Hyper, Best Wallet Token, and Remittix. These projects stand out for having a strong use case and high adoption potential, especially given the push for a U.S. Bitcoin reserve.   Why the Bitcoin Reserve Bill Matters for Crypto Markets The strategic Bitcoin Reserve Bill could mark a turning point for the U.S. approach to digital assets. The proposal would see America build a long-term Bitcoin reserve by acquiring up to one million $BTC over five years. To make this happen, lawmakers are exploring creative funding methods such as revaluing old gold certificates. The plan also leans on confiscated Bitcoin already held by the government, worth an estimated $15–20B. This isn’t just a headline for policy wonks. It signals that Bitcoin is moving from the margins into the core of financial strategy. Industry figures like Michael Saylor, Senator Cynthia Lummis, and Marathon Digital’s Fred Thiel are all backing the bill. They see Bitcoin not just as an investment, but as a hedge against systemic risks. For the wider crypto market, this opens the door for projects tied to Bitcoin and the infrastructure that supports it. 1. Bitcoin Hyper ($HYPER) – Turning Bitcoin Into More Than Just Digital Gold The U.S. may soon treat Bitcoin as…
Share
BitcoinEthereumNews2025/09/18 00:27
The Future of Secure Messaging: Why Decentralization Matters

The Future of Secure Messaging: Why Decentralization Matters

The post The Future of Secure Messaging: Why Decentralization Matters appeared on BitcoinEthereumNews.com. From encrypted chats to decentralized messaging Encrypted messengers are having a second wave. Apps like WhatsApp, iMessage and Signal made end-to-end encryption (E2EE) a default expectation. But most still hinge on phone numbers, centralized servers and a lot of metadata, such as who you talk to, when, from which IP and on which device. That is what Vitalik Buterin is aiming at in his recent X post and donation. He argues the next steps for secure messaging are permissionless account creation with no phone numbers or Know Your Customer (KYC) and much stronger metadata privacy. In that context he highlighted Session and SimpleX and sent 128 Ether (ETH) to each to keep pushing in that direction. Session is a good case study because it tries to combine E2E encryption with decentralization. There is no central message server, traffic is routed through onion paths, and user IDs are keys instead of phone numbers. Did you know? Forty-three percent of people who use public WiFi report experiencing a data breach, with man-in-the-middle attacks and packet sniffing against unencrypted traffic among the most common causes. How Session stores your messages Session is built around public key identities. When you sign up, the app generates a keypair locally and derives a Session ID from it with no phone number or email required. Messages travel through a network of service nodes using onion routing so that no single node can see both the sender and the recipient. (You can see your message’s node path in the settings.) For asynchronous delivery when you are offline, messages are stored in small groups of nodes called “swarms.” Each Session ID is mapped to a specific swarm, and your messages are stored there encrypted until your client fetches them. Historically, messages had a default time-to-live of about two weeks…
Share
BitcoinEthereumNews2025/12/08 14:40