The post GitHub Enhances Copilot with Custom Model for Improved Code Completions appeared on BitcoinEthereumNews.com. Luisa Crawford Oct 24, 2025 17:54 GitHub introduces a new custom model for Copilot, enhancing code completion speed and accuracy, with a focus on developer feedback and real-world usage. GitHub has unveiled a new custom model designed to enhance its AI-powered coding assistant, Copilot. The latest updates promise faster, smarter code completions, with improvements driven by extensive developer feedback, according to a post by Shengyu Fu and John Mogensen on the GitHub Blog. Enhancements in Code Completion The updates to GitHub Copilot focus on delivering more relevant and efficient code suggestions. These improvements include a 20% increase in accepted and retained characters, a 12% higher acceptance rate, and a threefold increase in token-per-second throughput, coupled with a 35% reduction in latency. These changes aim to enhance the overall experience across various editors and environments, allowing developers to spend less time editing and more time building. Why It Matters The focus on optimizing for accepted and retained characters, alongside code flow, marks a shift from the previous emphasis on acceptance rates alone. By doing so, GitHub aims to provide suggestions that developers find more useful and relevant, ultimately enhancing productivity. The updated model ensures that a greater portion of Copilot’s suggestions remain in the final code, thus reducing unnecessary keystrokes. Evaluation and Feedback To ensure the effectiveness of the new model, GitHub relied on a multi-layered evaluation strategy. This included offline, pre-production, and production evaluations, each contributing to refining different aspects of the code completion experience. The model’s performance is assessed through metrics like accepted-and-retained characters, acceptance rates, and latency, ensuring real-world applicability and developer satisfaction. Training the Custom Model The training process for the new model involved mid-training on a curated corpus of modern code, followed by supervised fine-tuning and reinforcement learning.… The post GitHub Enhances Copilot with Custom Model for Improved Code Completions appeared on BitcoinEthereumNews.com. Luisa Crawford Oct 24, 2025 17:54 GitHub introduces a new custom model for Copilot, enhancing code completion speed and accuracy, with a focus on developer feedback and real-world usage. GitHub has unveiled a new custom model designed to enhance its AI-powered coding assistant, Copilot. The latest updates promise faster, smarter code completions, with improvements driven by extensive developer feedback, according to a post by Shengyu Fu and John Mogensen on the GitHub Blog. Enhancements in Code Completion The updates to GitHub Copilot focus on delivering more relevant and efficient code suggestions. These improvements include a 20% increase in accepted and retained characters, a 12% higher acceptance rate, and a threefold increase in token-per-second throughput, coupled with a 35% reduction in latency. These changes aim to enhance the overall experience across various editors and environments, allowing developers to spend less time editing and more time building. Why It Matters The focus on optimizing for accepted and retained characters, alongside code flow, marks a shift from the previous emphasis on acceptance rates alone. By doing so, GitHub aims to provide suggestions that developers find more useful and relevant, ultimately enhancing productivity. The updated model ensures that a greater portion of Copilot’s suggestions remain in the final code, thus reducing unnecessary keystrokes. Evaluation and Feedback To ensure the effectiveness of the new model, GitHub relied on a multi-layered evaluation strategy. This included offline, pre-production, and production evaluations, each contributing to refining different aspects of the code completion experience. The model’s performance is assessed through metrics like accepted-and-retained characters, acceptance rates, and latency, ensuring real-world applicability and developer satisfaction. Training the Custom Model The training process for the new model involved mid-training on a curated corpus of modern code, followed by supervised fine-tuning and reinforcement learning.…

GitHub Enhances Copilot with Custom Model for Improved Code Completions

2025/10/26 07:57


Luisa Crawford
Oct 24, 2025 17:54

GitHub introduces a new custom model for Copilot, enhancing code completion speed and accuracy, with a focus on developer feedback and real-world usage.

GitHub has unveiled a new custom model designed to enhance its AI-powered coding assistant, Copilot. The latest updates promise faster, smarter code completions, with improvements driven by extensive developer feedback, according to a post by Shengyu Fu and John Mogensen on the GitHub Blog.

Enhancements in Code Completion

The updates to GitHub Copilot focus on delivering more relevant and efficient code suggestions. These improvements include a 20% increase in accepted and retained characters, a 12% higher acceptance rate, and a threefold increase in token-per-second throughput, coupled with a 35% reduction in latency. These changes aim to enhance the overall experience across various editors and environments, allowing developers to spend less time editing and more time building.

Why It Matters

The focus on optimizing for accepted and retained characters, alongside code flow, marks a shift from the previous emphasis on acceptance rates alone. By doing so, GitHub aims to provide suggestions that developers find more useful and relevant, ultimately enhancing productivity. The updated model ensures that a greater portion of Copilot’s suggestions remain in the final code, thus reducing unnecessary keystrokes.

Evaluation and Feedback

To ensure the effectiveness of the new model, GitHub relied on a multi-layered evaluation strategy. This included offline, pre-production, and production evaluations, each contributing to refining different aspects of the code completion experience. The model’s performance is assessed through metrics like accepted-and-retained characters, acceptance rates, and latency, ensuring real-world applicability and developer satisfaction.

Training the Custom Model

The training process for the new model involved mid-training on a curated corpus of modern code, followed by supervised fine-tuning and reinforcement learning. This approach ensured the model’s fluency, consistency in style, and awareness of context. The reinforcement learning algorithm focused on enhancing code quality, relevance, and helpfulness, resulting in completions that are more precise and useful for developers.

Future Developments

Looking ahead, GitHub plans to expand Copilot’s capabilities into domain-specific areas such as game engines and financial systems. The team is also working on refining reward functions to further improve the quality and relevance of code completions, ensuring that Copilot continues to offer high-quality assistance in diverse developer environments.

The enhancements to GitHub Copilot underscore the platform’s commitment to leveraging AI to improve developer productivity and streamline the coding process. By integrating developer feedback and focusing on real-world application, GitHub aims to offer a more intuitive and effective coding assistant.

Image source: Shutterstock

Source: https://blockchain.news/news/github-enhances-copilot-custom-model-improved-code-completions

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

The post Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council appeared on BitcoinEthereumNews.com. Michael Saylor and a group of crypto executives met in Washington, D.C. yesterday to push for the Strategic Bitcoin Reserve Bill (the BITCOIN Act), which would see the U.S. acquire up to 1M $BTC over five years. With Bitcoin being positioned yet again as a cornerstone of national monetary policy, many investors are turning their eyes to projects that lean into this narrative – altcoins, meme coins, and presales that could ride on the same wave. Read on for three of the best crypto projects that seem especially well‐suited to benefit from this macro shift:  Bitcoin Hyper, Best Wallet Token, and Remittix. These projects stand out for having a strong use case and high adoption potential, especially given the push for a U.S. Bitcoin reserve.   Why the Bitcoin Reserve Bill Matters for Crypto Markets The strategic Bitcoin Reserve Bill could mark a turning point for the U.S. approach to digital assets. The proposal would see America build a long-term Bitcoin reserve by acquiring up to one million $BTC over five years. To make this happen, lawmakers are exploring creative funding methods such as revaluing old gold certificates. The plan also leans on confiscated Bitcoin already held by the government, worth an estimated $15–20B. This isn’t just a headline for policy wonks. It signals that Bitcoin is moving from the margins into the core of financial strategy. Industry figures like Michael Saylor, Senator Cynthia Lummis, and Marathon Digital’s Fred Thiel are all backing the bill. They see Bitcoin not just as an investment, but as a hedge against systemic risks. For the wider crypto market, this opens the door for projects tied to Bitcoin and the infrastructure that supports it. 1. Bitcoin Hyper ($HYPER) – Turning Bitcoin Into More Than Just Digital Gold The U.S. may soon treat Bitcoin as…
Share
BitcoinEthereumNews2025/09/18 00:27
The Future of Secure Messaging: Why Decentralization Matters

The Future of Secure Messaging: Why Decentralization Matters

The post The Future of Secure Messaging: Why Decentralization Matters appeared on BitcoinEthereumNews.com. From encrypted chats to decentralized messaging Encrypted messengers are having a second wave. Apps like WhatsApp, iMessage and Signal made end-to-end encryption (E2EE) a default expectation. But most still hinge on phone numbers, centralized servers and a lot of metadata, such as who you talk to, when, from which IP and on which device. That is what Vitalik Buterin is aiming at in his recent X post and donation. He argues the next steps for secure messaging are permissionless account creation with no phone numbers or Know Your Customer (KYC) and much stronger metadata privacy. In that context he highlighted Session and SimpleX and sent 128 Ether (ETH) to each to keep pushing in that direction. Session is a good case study because it tries to combine E2E encryption with decentralization. There is no central message server, traffic is routed through onion paths, and user IDs are keys instead of phone numbers. Did you know? Forty-three percent of people who use public WiFi report experiencing a data breach, with man-in-the-middle attacks and packet sniffing against unencrypted traffic among the most common causes. How Session stores your messages Session is built around public key identities. When you sign up, the app generates a keypair locally and derives a Session ID from it with no phone number or email required. Messages travel through a network of service nodes using onion routing so that no single node can see both the sender and the recipient. (You can see your message’s node path in the settings.) For asynchronous delivery when you are offline, messages are stored in small groups of nodes called “swarms.” Each Session ID is mapped to a specific swarm, and your messages are stored there encrypted until your client fetches them. Historically, messages had a default time-to-live of about two weeks…
Share
BitcoinEthereumNews2025/12/08 14:40