SOLID isn’t academic fluff - it’s your insurance against rage-quitting your own codebase. This article breaks down all five principles (SRP, OCP, LSP, ISP, DIP) with Python + UML, showing bad vs good examples. If you want cleaner design, fewer bugs, and teammates who don’t hate you, read this.SOLID isn’t academic fluff - it’s your insurance against rage-quitting your own codebase. This article breaks down all five principles (SRP, OCP, LSP, ISP, DIP) with Python + UML, showing bad vs good examples. If you want cleaner design, fewer bugs, and teammates who don’t hate you, read this.

SOLID Principles In Practice With Python And UML Examples in 2025

2025/08/28 14:22

\ Let’s be real: most developers nod politely when SOLID comes up, then continue writing 500-line classes that smell worse than week-old fried eggs.

Here’s the thing: SOLID isn’t about pleasing your CS professor. It’s about writing code that your future self won’t want to rage-quit from after a single bugfix. Bad code means frustration, late nights, and way too much coffee.

SOLID is a language that senior devs use to communicate across years of maintenance. When you see it in a project, you don’t need to crawl line by line like some code archaeologist digging through ruins. Instead, you can predict the system’s behavior, understand responsibilities, and trust that classes aren’t hiding surprises like a clown in a sewer drain. Follow it, and you can read code like a map. Ignore it, and you're wandering blind through spaghetti caves.

What is SOLID (for the two people who missed the party)?

SOLID is an acronym for five object-oriented design principles coined by Uncle Bob Martin back when 2000s were still a thing:

  • S — Single Responsibility Principle (SRP)
  • O — Open–Closed Principle (OCP)
  • L — Liskov Substitution Principle (LSP)
  • I — Interface Segregation Principle (ISP)
  • D — Dependency Inversion Principle (DIP)

Each principle is simple in words, but game-changing in practice. Let’s walk through them with Python and UML examples, and see why your future code reviewers will thank you.

\


🪓 Single Responsibility Principle (SRP)

One job, one class. Don’t be that developer who mixes logging, DB writes, and business logic in one method.

Why it matters

If a class does too many things, every change risks breaking unrelated behavior. It’s like wiring your home’s electricity, plumbing, and gas through the same pipe - one adjustment and the whole house either floods, burns, or explodes.

Bad Example

Here’s a FileManager class that thinks it’s Batman: reads files, writes them, compresses them, and even appends greetings:

UML

from pathlib import Path from zipfile import ZipFile   class FileManager:     def __init__(self, file_path: str):         self.path = Path(file_path)      def read(self) -> str:         return self.path.read_text('utf-8')      def write(self, content: str):         self.path.write_text(content, 'utf-8')      def compress(self):         with ZipFile(self.path.with_suffix('.zip'), mode='w') as file:             file.write(self.path)      def add_greeting(self, content: str) -> str:         return content + '\nHello world!'   if __name__ == '__main__':     file_path = 'data.txt'     file_manager = FileManager(file_path)     content = file_manager.add_greeting(file_manager.read())     file_manager.write(content)     file_manager.compress() 

Call diagram

What’s wrong?

Although the usage looks easy, every time you need to tweak compression, you risk breaking file writing. Change greetings? Oops, now compression fails.

Good Example

Split responsibilities. Each class does one job, cleanly.

UML

from pathlib import Path from zipfile import ZipFile  DEFAULT_ENCODING = 'utf-8'   class FileReader:     def __init__(self, file_path: Path, encoding: str = DEFAULT_ENCODING):         self.path = file_path         self.encoding = encoding      def read(self) -> str:         return self.path.read_text(self.encoding)   class FileWriter:     def __init__(self, file_path: Path, encoding: str = DEFAULT_ENCODING):         self.path = file_path         self.encoding = encoding      def write(self, content: str):         self.path.write_text(content, self.encoding)   class FileCompressor:     def __init__(self, file_path: Path):         self.path = file_path      def compress(self):         with ZipFile(self.path.with_suffix('.zip'), mode='w') as file:             file.write(self.path)   def add_greeting(self, content: str) -> str:     return content + '\nHello world!'   if __name__ == '__main__':     file_path = Path('data.txt')     content = FileReader(file_path).read()     FileWriter(file_path).write(add_greeting(content))     FileCompressor(file_path).compress() 

Call diagram

Although the call diagram looks a little trickier, now you can modify compression without touching greetings. Future you approves.

\


🧩 Open–Closed Principle (OCP)

Code should be open for extension, closed for modification. Like Netflix - adding new shows without rewriting the entire app.

Why it matters

If every new feature forces you to edit the same class, your code becomes a fragile Jenga tower. Add one more method, and boom - production outage.

Bad Example

The classic “God class of geometry”:

UML

from math import pi   class Shape3D:     def __init__(self, shape_type: str, **kwargs):         self.shape_type = shape_type         self.kwargs = kwargs      def calculate_parallelepiped_volume(self):         return self.kwargs['w'] * self.kwargs['h'] * self.kwargs['l']      def calculate_sphere_volume(self):         return 3 / 4 * pi * self.kwargs['r'] ** 3      def calculate_cone_volume(self):         return 1 / 3 * pi * self.kwargs['r'] ** 2 * self.kwargs['h']      def volume(self) -> float:         if self.shape_type == 'parallelepiped':             return self.calculate_parallelepiped_volume()         if self.shape_type == 'sphere':             return self.calculate_sphere_volume()         if self.shape_type == 'cone':             return self.calculate_cone_volume()         # Add more ifs forever         raise ValueError   if __name__ == '__main__':     print(Shape3D('parallelepiped', w=1.0, h=2.0, l=3.0).volume())     print(Shape3D('sphere', r=3.5).volume())     print(Shape3D('cone', r=3.5, h=2.0).volume()) 

Every time you add a new shape, you hack this class. Here, we are not extending; we are modifying. This violates OCP.

Good Example

Make a common base class, extend it with new shapes.

UML

from abc import ABC, abstractmethod from math import pi   class Shape3D(ABC):     @abstractmethod     def volume(self) -> float:         raise NotImplementedError   class Parallelepiped(Shape3D):     def __init__(self, w: float, h: float, l: float):         self.w, self.h, self.l = w, h, l      def volume(self):         return self.w * self.h * self.l   class Sphere(Shape3D):     def __init__(self, r: float):         self.r = r      def volume(self):         return 3 / 4 * pi * self.r ** 3   class Cone(Shape3D):     def __init__(self, r: float, h: float):         self.r, self.h = r, h      def volume(self):         return 1 / 3 * pi * self.r ** 2 * self.h   if __name__ == '__main__':     print(Parallelepiped(w=1.0, h=2.0, l=3.0).volume())     print(Sphere(r=3.5).volume())     print(Cone(r=3.5, h=2.0).volume()) 

Want a Torus? Just new subclass. No if-hell required, no edits of old code. Clean. Extensible. Chef’s kiss.

\

🤔 Another Discussable Example of OCP Violation

Here’s a class that offers multiple hard-coded greeting methods:

UML

class GreetingContainer:     def __init__(self, name: str):         self.name = name      def hi_greet(self):         print("Hi, " + self.name)      def hey_greet(self):         print("Hey, " + self.name)      def hello_greet(self):         print("Hello, " + self.name) 

At first glance this looks fine: we’re not deleting or altering existing methods, we’re just adding new ones. Technically, we’re extending the class. But here’s the catch: clients using this class must know exactly which method to call, and the interface keeps bloating. This design is brittle - new greetings mean more methods and more places in the code that have to be aware of them. You can argue it’s not a direct OCP violation, but it drifts into LSP territory: instances of GreetingContainer can’t be treated uniformly, since behavior depends on which method you pick (we will discuss it a little later).

\


🦆 Liskov Substitution Principle (LSP)

If code expects an object of some type, any subclass should be usable without nasty surprises. A subclass that breaks this promise isn’t an extension - it’s a landmine disguised as a feature.

Why it matters

Subclasses must be replaceable with their children without breaking stuff. Violate this, and you’ll create runtime landmines.

Bad example

UML

class Bird:     def fly(self):         return "The bird is flying"      def walk(self):         return "The bird is walking"   class Duck(Bird):     def fly(self):         return "The duck is flying"      def walk(self):         return "The duck is walking"   class Penguin(Bird):     def fly(self):         raise AttributeError("Penguins cannot fly:(")      def walk(self):         return "The penguin is walking" 

Penguins do exist, but they break LSP here. Anywhere you expect a Bird, the substitution fails and the design no longer guarantees consistent behavior.

Good example

Split behaviors:

UML

class FlyingBird:     def fly(self):         return "The bird is flying"   class WalkingBird:     def walk(self):         return "The bird is walking"   class Duck(FlyingBird, WalkingBird):     def fly(self):         return "The duck is flying"      def walk(self):         return "The duck is walking"   class Penguin(WalkingBird):     def walk(self):         return "The penguin is walking" 

Now penguins waddle safely. Ducks still fly. Everyone’s happy. No runtime betrayals.

\

Good Example of a greeter from the OCP topic

Define a base Greeter and extend it with new variants:

UML

class Greeter:     def __init__(self, name: str):         self.name = name      def greet(self):         raise NotImplementedError   class HiGreeter(Greeter):     def greet(self):         print("Hi, " + self.name)   class HeyGreeter(Greeter):     def greet(self):         print("Hey, " + self.name)   class HelloGreeter(Greeter):     def greet(self):         print("Hello, " + self.name) 

This design is cleaner: the interface stays stable (greet()), new greetings are real extensions, and polymorphism works. Clients don’t care how the greeting is produced - they just call greet(). And the real benefit: we can swap one Greeter for another and remain confident the code behaves as expected, without digging into implementation details - because we followed OCP and LSP. That’s the spirit of predictable, maintainable design.

For the nerds, the formal definition of this principle is:

en.wikipedia.org/wiki/Liskov_substitution_principle

\


🔌 Interface Segregation Principle (ISP)

Don’t force a class to implement methods it doesn’t need. Otherwise you’re just padding the code with dead weight.

Why it matters

Clients shouldn’t be forced to implement methods they don’t need. If your interface has eat() and sleep(), but a robot only needs charge(), you’re designing like it’s 1999. Formally: many small, focused interfaces are always better than one bloated interface that forces irrelevant obligations.

Bad example

UML

from abc import ABC, abstractmethod   class IEmployee(ABC):     @abstractmethod     def work(self):         pass      @abstractmethod     def eat(self):         pass      @abstractmethod     def sleep(self):         pass   class Programmer(IEmployee):     def work(self):         print("Programmer programs programs")      def eat(self):         print("Programmer eats pizza")      def sleep(self):         print("Programmer falls asleep at 2 AM")   class Android(IEmployee):     def work(self):         print("Android moves boxes")      def eat(self):         raise NotImplementedError("Android doesn't eat, it's a machine")      def sleep(self):         raise NotImplementedError("Android doesn't sleep, it's a machine") 

Good example

Split interfaces:

UML

from abc import ABC, abstractmethod   class IEmployee(ABC):     @abstractmethod     def work(self):         pass   class IHuman(ABC):     @abstractmethod     def eat(self):         pass      @abstractmethod     def sleep(self):         pass   class IMachine:     @abstractmethod     def charge(self):         pass   class Programmer(IEmployee, IHuman):     def work(self):         print("Programmer programs programs")      def eat(self):         print("Programmer eats pizza")      def sleep(self):         print("Programmer falls asleep at 2 AM")   class Android(IEmployee, IMachine):     def work(self):         print("Android moves boxes")      def charge(self):         print("Android charges, wait for 3 hours") 

Now humans eat, robots charge. No unnecessary code. Interfaces are lean, not bloated.

\

\


🏗 Dependency Inversion Principle (DIP)

Depend on abstractions, not concrete implementations. Otherwise, your code is welded to a single library or vendor like shackles you’ll never escape from.

Why it matters

If your service directly imports boto3, good luck swapping S3 for HDFS, GCS, or even MinIO. From a formal perspective, this creates a tight coupling to a specific implementation rather than an abstraction, which severely limits extensibility and portability. Vendor lock-in = pain, and even a simple architectural decision - like supporting both on-prem HDFS and cloud object storage - suddenly requires massive rewrites.

Bad example

UML

import boto3   class DistributedFileSystem:     def __init__(self):         self.client = boto3.client('s3')      def read_file(path: str) -> bytes:         data = self.client.get_object(Key=path)         return data['Body'].read()      def write_file(path: str, file: bytes):         self.client.put_object(Body=file, Key=path) 

Direct AWS dependency. Migrating to another cloud = rewrite.

Good example

Abstract it:

UML

from abc import ABC, abstractmethod  import boto3   class DistributedFileSystem(ABC):     @abstractmethod     def read_file(path: str) -> bytes:         pass      @abstractmethod     def write_file(path: str, file: bytes):         pass   class BotoS3Client(DistributedFileSystem):     def __init__(self):         self.client = boto3.client('s3')      def read_file(path: str) -> bytes:         data = self.client.get_object(Key=path)         return data['Body'].read()      def write_file(path: str, file: bytes):         self.client.put_object(Body=file, Key=path)   class HDFSClient(DistributedFileSystem): ... 

Now you can switch storage backends without rewriting business logic. Future-proof and vendor-agnostic.

\


Final Thoughts: SOLID ≠ Religion, But It Saves Your Sanity

In 2025, frameworks evolve, clouds change, AI tools promise to “replace us”, but the pain of bad code is eternal.

SOLID isn’t dogma - it’s the difference between code that scales with your project and code nobody wants to work with.

Use SOLID not because Uncle Bob said so, but because your future self (and your team) will actually enjoy working with you.

\


👉 What do you think - are SOLID principles still relevant today, or do you prefer chaos-driven development?

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

The post Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council appeared on BitcoinEthereumNews.com. Michael Saylor and a group of crypto executives met in Washington, D.C. yesterday to push for the Strategic Bitcoin Reserve Bill (the BITCOIN Act), which would see the U.S. acquire up to 1M $BTC over five years. With Bitcoin being positioned yet again as a cornerstone of national monetary policy, many investors are turning their eyes to projects that lean into this narrative – altcoins, meme coins, and presales that could ride on the same wave. Read on for three of the best crypto projects that seem especially well‐suited to benefit from this macro shift:  Bitcoin Hyper, Best Wallet Token, and Remittix. These projects stand out for having a strong use case and high adoption potential, especially given the push for a U.S. Bitcoin reserve.   Why the Bitcoin Reserve Bill Matters for Crypto Markets The strategic Bitcoin Reserve Bill could mark a turning point for the U.S. approach to digital assets. The proposal would see America build a long-term Bitcoin reserve by acquiring up to one million $BTC over five years. To make this happen, lawmakers are exploring creative funding methods such as revaluing old gold certificates. The plan also leans on confiscated Bitcoin already held by the government, worth an estimated $15–20B. This isn’t just a headline for policy wonks. It signals that Bitcoin is moving from the margins into the core of financial strategy. Industry figures like Michael Saylor, Senator Cynthia Lummis, and Marathon Digital’s Fred Thiel are all backing the bill. They see Bitcoin not just as an investment, but as a hedge against systemic risks. For the wider crypto market, this opens the door for projects tied to Bitcoin and the infrastructure that supports it. 1. Bitcoin Hyper ($HYPER) – Turning Bitcoin Into More Than Just Digital Gold The U.S. may soon treat Bitcoin as…
Share
BitcoinEthereumNews2025/09/18 00:27
The Future of Secure Messaging: Why Decentralization Matters

The Future of Secure Messaging: Why Decentralization Matters

The post The Future of Secure Messaging: Why Decentralization Matters appeared on BitcoinEthereumNews.com. From encrypted chats to decentralized messaging Encrypted messengers are having a second wave. Apps like WhatsApp, iMessage and Signal made end-to-end encryption (E2EE) a default expectation. But most still hinge on phone numbers, centralized servers and a lot of metadata, such as who you talk to, when, from which IP and on which device. That is what Vitalik Buterin is aiming at in his recent X post and donation. He argues the next steps for secure messaging are permissionless account creation with no phone numbers or Know Your Customer (KYC) and much stronger metadata privacy. In that context he highlighted Session and SimpleX and sent 128 Ether (ETH) to each to keep pushing in that direction. Session is a good case study because it tries to combine E2E encryption with decentralization. There is no central message server, traffic is routed through onion paths, and user IDs are keys instead of phone numbers. Did you know? Forty-three percent of people who use public WiFi report experiencing a data breach, with man-in-the-middle attacks and packet sniffing against unencrypted traffic among the most common causes. How Session stores your messages Session is built around public key identities. When you sign up, the app generates a keypair locally and derives a Session ID from it with no phone number or email required. Messages travel through a network of service nodes using onion routing so that no single node can see both the sender and the recipient. (You can see your message’s node path in the settings.) For asynchronous delivery when you are offline, messages are stored in small groups of nodes called “swarms.” Each Session ID is mapped to a specific swarm, and your messages are stored there encrypted until your client fetches them. Historically, messages had a default time-to-live of about two weeks…
Share
BitcoinEthereumNews2025/12/08 14:40