This article describes the online inference stage of the model, which predicts 3D avatars in a frame-by-frame manner using a sliding window approachThis article describes the online inference stage of the model, which predicts 3D avatars in a frame-by-frame manner using a sliding window approach

Temporal Refinement in Stratified Motion Diffusion: Utilizing GRU for Smoothed Full-Body Prediction

Abstract and 1. Introduction

  1. Related Work

    2.1. Motion Reconstruction from Sparse Input

    2.2. Human Motion Generation

  2. SAGE: Stratified Avatar Generation and 3.1. Problem Statement and Notation

    3.2. Disentangled Motion Representation

    3.3. Stratified Motion Diffusion

    3.4. Implementation Details

  3. Experiments and Evaluation Metrics

    4.1. Dataset and Evaluation Metrics

    4.2. Quantitative and Qualitative Results

    4.3. Ablation Study

  4. Conclusion and References

\ Supplementary Material

A. Extra Ablation Studies

B. Implementation Details

3.4. Implementation Details

\ For the inference stage, we evaluate our model in an online manner. Specifically, we fix the sequence length at 20 for both the input and the output of our model, and only the last pose in the output motion sequence is retained. Given a sparse observation sequence, we apply our model using a sliding window approach. For the first 20 poses in the motion sequence, we predict by padding the sparse observation sequence x at the beginning with the first available observation. We make this choice considering the practicality and relevance of online inference in real-world application scenarios. This allows the motion sequences to be predicted in a frame-by-frame manner.

\ In addition, we employ a simple two-layer GRU [9] on the top of the full body decoder as a temporal memory to smooth the prediction of the output sequence with minimal computational expense, and we term it as a Refiner. To train this Refiner, we use the same velocity loss as [54]. Our model takes 0.74ms to infer 1 frame on a single NVIDIA RTX3090 GPU.

\

:::info Authors:

(1) Han Feng, equal contributions, ordered by alphabet from Wuhan University;

(2) Wenchao Ma, equal contributions, ordered by alphabet from Pennsylvania State University;

(3) Quankai Gao, University of Southern California;

(4) Xianwei Zheng, Wuhan University;

(5) Nan Xue, Ant Group ([email protected]);

(6) Huijuan Xu, Pennsylvania State University.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

[OPINION] Honduras’ election turmoil offers a warning — and a mirror — for the Philippines

[OPINION] Honduras’ election turmoil offers a warning — and a mirror — for the Philippines

IN PROTEST. Supporters of the Liberty and Refoundation party protest in front of the presidential palace in support of Honduran President Xiomara Castro in what
Share
Rappler2025/12/19 20:00
UST honors ‘heaven-sent’ Pastrana, Soriano as Tigresses reignite UAAP contender fire

UST honors ‘heaven-sent’ Pastrana, Soriano as Tigresses reignite UAAP contender fire

After crossing paths in UST for the first time in UAAP Season 86, Kent Pastrana and Eka Soriano leave the Growling Tigresses' lair as two-time champions, reigniting
Share
Rappler2025/12/19 20:21
Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued

The post Foreigner’s Lou Gramm Revisits The Band’s Classic ‘4’ Album, Now Reissued appeared on BitcoinEthereumNews.com. American-based rock band Foreigner performs onstage at the Rosemont Horizon, Rosemont, Illinois, November 8, 1981. Pictured are, from left, Mick Jones, on guitar, and vocalist Lou Gramm. (Photo by Paul Natkin/Getty Images) Getty Images Singer Lou Gramm has a vivid memory of recording the ballad “Waiting for a Girl Like You” at New York City’s Electric Lady Studio for his band Foreigner more than 40 years ago. Gramm was adding his vocals for the track in the control room on the other side of the glass when he noticed a beautiful woman walking through the door. “She sits on the sofa in front of the board,” he says. “She looked at me while I was singing. And every now and then, she had a little smile on her face. I’m not sure what that was, but it was driving me crazy. “And at the end of the song, when I’m singing the ad-libs and stuff like that, she gets up,” he continues. “She gives me a little smile and walks out of the room. And when the song ended, I would look up every now and then to see where Mick [Jones] and Mutt [Lange] were, and they were pushing buttons and turning knobs. They were not aware that she was even in the room. So when the song ended, I said, ‘Guys, who was that woman who walked in? She was beautiful.’ And they looked at each other, and they went, ‘What are you talking about? We didn’t see anything.’ But you know what? I think they put her up to it. Doesn’t that sound more like them?” “Waiting for a Girl Like You” became a massive hit in 1981 for Foreigner off their album 4, which peaked at number one on the Billboard chart for 10 weeks and…
Share
BitcoinEthereumNews2025/09/18 01:26