You learn by comparing to what you already know. I was recently bitten by assuming Rust worked as Java regarding transitive dependency version resolution. In this post, I want to compare the two.You learn by comparing to what you already know. I was recently bitten by assuming Rust worked as Java regarding transitive dependency version resolution. In this post, I want to compare the two.

Transitive Dependency Version Resolution in Rust and Java: Comparing the Two

2025/09/21 23:00

You learn by comparing to what you already know. I was recently bitten by assuming Rust worked as Java regarding transitive dependency version resolution. In this post, I want to compare the two.

Dependencies, Transitivity, and Version Resolution

Before diving into the specifics of each stack, let's describe the domain and the problems that come with it.

\ When developing any project above Hello World level, chances are you'll face problems that others have faced before. If the problem is widespread, the probability is high that somebody was kind and civic-minded enough to have packaged the code that solves it, for others to re-use. Now, you can use the package and focus on solving your core problem. It's how industry builds most projects today, even if it brings other problems: you sit on the shoulders of giants.

\ Languages come with build tools that can add such packages to your project. Most of them refer to packages you add to your project as dependencies. In turn, projects' dependencies can have their own dependencies: the latter are called transitive dependencies.

Transitive dependencies

In the above diagram, C and D are transitive dependencies.

\ Transitive dependencies have issues on their own. The biggest one is when a transitive dependency is required from different paths, but in different versions. In the diagram below, A and B both depend on C, but on different versions of it.

Which version of C should the build tool include in your project? Java and Rust have different answers. Let's describe them in turn.

Java Transitive Dependency Version Resolution

Reminder: Java code compiles to bytecode, which is then interpreted at runtime (and sometimes compiled to native code, but this is outside of our current problem space). I'll first describe runtime dependency resolution and build-time dependency resolution.

\ At runtime, the Java Virtual Machine offers the concept of a classpath. When having to load a class, the runtime searches through the configured classpath in order. Imagine the following class:

public static Main {     public static void main(String[] args) {         Class.forName("ch.frankel.Dep");     } } 

\ Let's compile it and execute it:

java -cp ./foo.jar:./bar.jar Main 

\ The above will first look in the foo.jar for the ch.frankel.Dep class. If found, it stops there and loads the class, regardless of whether it might also be present in the bar.jar; if not, it looks further in the bar.jar class. If still not found, it fails with a ClassNotFoundException.

\ Java's runtime dependency resolution mechanism is ordered and has a per-class granularity. It applies whether you run a Java class and define the classpath on the command line as above, or whether you run a JAR that defines the classpath in its manifest.

\ Let's change the above code to the following:

public static Main {     public static void main(String[] args) {         var dep = new ch.frankel.Dep();     } } 

\ Because the new code references Dep directly, new code requires class resolution at compile-time. Classpath resolution works in the same way:

javac -cp ./foo.jar:./bar.jar Main 

\ The compiler looks for Dep in foo.jar, then in bar.jar if not found. The above is what you learn at the beginning of your Java learning journey.

\ Afterwards, your unit of work is the Java Archive, known as the JAR, instead of the class. A JAR is a glorified ZIP archive, with an internal manifest that specifies its version.

\ Now, imagine that you're a user of foo.jar. Developers of foo.jar set a specific classpath when compiling, possibly including other JARs. You'll need this information to run your own command. How does a library developer pass this knowledge to downstream users?

\ The community came up with a few ideas to answer this question: The first response that stuck was Maven. Maven has the concept of Project Object Model, where you set your project's metadata, as well as dependencies. Maven can easily resolve transitive dependencies because they also publish their POM, with their own dependencies. Hence, Maven can trace each dependency's dependencies down to the leaf dependencies.

\ Now, back to the problem statement: how does Maven resolve version conflicts? Which dependency version will Maven resolve for C, 1.0 or 2.0?

\ The documentation is clear: the nearest.

Dependency resolution with the same dependency in different versions

In the above diagram, the path to v1 has a distance of two, one to B, then one to C; meanwhile, the path to v2 has a distance of three, one to A, then one to D, then finally one to C. Thus, the shortest path points to v1.

\ However, in the initial diagram, both C versions are at the same distance from the root artifact. The documentation provides no answer. If you're interested in it, it depends on the order of declaration of A and B in the POM! In summary, Maven returns a single version of a duplicated dependency to include it on the compile classpath.

\ If A can work with C v2.0 or B with C 1.0, great! If not, you'll probably need to upgrade your version of A or downgrade your version of B, so that the resolved C version works with both. It's a manual process that is painful–ask me how I know. Worse, you might find out there's no C version that works with both A and B. Time to replace A or B.

Rust Transitive Dependency Version Resolution

Rust differs from Java in several aspects, but I think the following are the most relevant for the sake of our discussion:

  • Rust has the same dependency tree at compile-time and at runtime
  • It provides a build tool out of the box, Cargo
  • Dependencies are resolved from source

\ Let's examine them one by one.

\ Java compiles to bytecode, then you run the latter. You need to set the classpath both at compilation time and at runtime. Compiling with a specific classpath and running with a different one can lead to errors. For example, imagine you compile with a class you depend on, but the class is absent at runtime. Or alternatively, it's present, but in an incompatible version.

\ Contrary to this modular approach, Rust compiles to a unique native package the crate's code and every dependency. Moreover, Rust provides its own build too, thus avoiding having to remember the quirks of different tools. I mentioned Maven, but other build tools likely have different rules to resolve the version in the use case above.

\ Finally, Java resolves dependencies from binaries: JARs. On the contrary, Rust resolves dependencies from sources. At build time, Cargo resolves the entire dependency tree, downloads all required sources, and compiles them in the correct order.

\ With this in mind, how does Rust resolve the version of the C dependency in the initial problem? The answer may seem strange if you come from a Java background, but Rust includes both. Indeed, in the above diagram, Rust will compile A with C v1.0 and compile B with C v2.0. Problem solved.

Conclusion

JVM languages, and Java in particular, offer both a compile-time classpath and a runtime classpath. It allows modularity and reusability, but opens the door to issues regarding classpath resolution. On the other hand, Rust builds your crate into a single self-contained binary, whether a library or an executable.

\ To go further:

  • Maven - Introduction to the Dependency Mechanism
  • Effective Rust - Item 25: Manage your dependency graph

Originally published at A Java Geek on September 14th, 2025

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council

The post Best Crypto to Buy as Saylor & Crypto Execs Meet in US Treasury Council appeared on BitcoinEthereumNews.com. Michael Saylor and a group of crypto executives met in Washington, D.C. yesterday to push for the Strategic Bitcoin Reserve Bill (the BITCOIN Act), which would see the U.S. acquire up to 1M $BTC over five years. With Bitcoin being positioned yet again as a cornerstone of national monetary policy, many investors are turning their eyes to projects that lean into this narrative – altcoins, meme coins, and presales that could ride on the same wave. Read on for three of the best crypto projects that seem especially well‐suited to benefit from this macro shift:  Bitcoin Hyper, Best Wallet Token, and Remittix. These projects stand out for having a strong use case and high adoption potential, especially given the push for a U.S. Bitcoin reserve.   Why the Bitcoin Reserve Bill Matters for Crypto Markets The strategic Bitcoin Reserve Bill could mark a turning point for the U.S. approach to digital assets. The proposal would see America build a long-term Bitcoin reserve by acquiring up to one million $BTC over five years. To make this happen, lawmakers are exploring creative funding methods such as revaluing old gold certificates. The plan also leans on confiscated Bitcoin already held by the government, worth an estimated $15–20B. This isn’t just a headline for policy wonks. It signals that Bitcoin is moving from the margins into the core of financial strategy. Industry figures like Michael Saylor, Senator Cynthia Lummis, and Marathon Digital’s Fred Thiel are all backing the bill. They see Bitcoin not just as an investment, but as a hedge against systemic risks. For the wider crypto market, this opens the door for projects tied to Bitcoin and the infrastructure that supports it. 1. Bitcoin Hyper ($HYPER) – Turning Bitcoin Into More Than Just Digital Gold The U.S. may soon treat Bitcoin as…
Share
BitcoinEthereumNews2025/09/18 00:27
The Future of Secure Messaging: Why Decentralization Matters

The Future of Secure Messaging: Why Decentralization Matters

The post The Future of Secure Messaging: Why Decentralization Matters appeared on BitcoinEthereumNews.com. From encrypted chats to decentralized messaging Encrypted messengers are having a second wave. Apps like WhatsApp, iMessage and Signal made end-to-end encryption (E2EE) a default expectation. But most still hinge on phone numbers, centralized servers and a lot of metadata, such as who you talk to, when, from which IP and on which device. That is what Vitalik Buterin is aiming at in his recent X post and donation. He argues the next steps for secure messaging are permissionless account creation with no phone numbers or Know Your Customer (KYC) and much stronger metadata privacy. In that context he highlighted Session and SimpleX and sent 128 Ether (ETH) to each to keep pushing in that direction. Session is a good case study because it tries to combine E2E encryption with decentralization. There is no central message server, traffic is routed through onion paths, and user IDs are keys instead of phone numbers. Did you know? Forty-three percent of people who use public WiFi report experiencing a data breach, with man-in-the-middle attacks and packet sniffing against unencrypted traffic among the most common causes. How Session stores your messages Session is built around public key identities. When you sign up, the app generates a keypair locally and derives a Session ID from it with no phone number or email required. Messages travel through a network of service nodes using onion routing so that no single node can see both the sender and the recipient. (You can see your message’s node path in the settings.) For asynchronous delivery when you are offline, messages are stored in small groups of nodes called “swarms.” Each Session ID is mapped to a specific swarm, and your messages are stored there encrypted until your client fetches them. Historically, messages had a default time-to-live of about two weeks…
Share
BitcoinEthereumNews2025/12/08 14:40