I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.

Why Gemini 3.0 is a Great Builder But Still Needs a Human in the Loop

2025/12/05 01:00

I spent a few weeks building a Neuro-Symbolic Manufacturing Engine. I proved that AI can design drones that obey physics. I also proved that asking AI to pivot that code to robotics is a one-way ticket to a circular drain.

\ Over the last few weeks, I have been documenting my journey building OpenForge, an AI system capable of translating vague user intent into flight-proven hardware.

\ The goal was to test the reasoning capabilities of Google’s Gemini 3.0. I wanted to answer a specific question: Can an LLM move beyond writing Python scripts and actually engineer physical systems where tolerance, voltage, and compatibility matter?

\ The answer, it turns out, is a complicated "Yes, but…"

\ I am wrapping up this project today. Here is the post-mortem on what worked, what failed, and the critical difference between Generating code and Refactoring systems.

The Win: Drone_4 Works

First, the good news. The drone_4 branch of the repository is a success.

\ If you clone the repo and ask for a "Long Range Cinema Drone," the system works from seed to simulation.

  1. It understands intent: It knows that "Cinema" means smooth flight and "Long Range" means GPS and Crossfire protocols.
  2. It obeys physics: The Compatibility Engine successfully rejects motor/battery combinations that would overheat or explode.
  3. It simulates reality: The USD files generated for NVIDIA Isaac Sim actually fly.

\ I will admit, I had to be pragmatic. In make_fleet.py, I "cheated" a little bit. I relied less on the LLM to dynamically invent the fleet logic and more on hard-coded Python orchestration. I had to remind myself that this was a test of Gemini 3.0’s reasoning, not a contest to see if I could avoid writing a single line of code.

\ As a proof of concept for Neuro-Symbolic AI—where the LLM handles the creative translation, and Python handles the laws of physics—OpenForge is a win.

The Failure: The Quadruped Pivot

The second half of the challenge was to take this working engine and pivot it. I wanted to turn the Drone Designer into a Robot Dog Designer (the Ranch Dog).

\ I fed Gemini 3.0 the entire codebase (88k tokens) and asked it to refactor. It confidently spit out new physics, new sourcing agents, and new kinematics solvers.

\ I am officially shelving the Quadruped branch.

\ It has become obvious that the way I started this pivot led me down a circular drain rabbit hole of troubleshooting. I found myself in a loop where fixing a torque calculation would break the inventory sourcing, and fixing the sourcing would break the simulation.

\ The Quad branch is effectively dead. If I want to build the Ranch Dog, I have to step back and build it from scratch, using the Drone engine merely as a reference model, not a base to overwrite.

The Lesson: The Flattening Effect

Why did the Drone engine succeed while the Quadruped refactor failed?

\ It comes down to a specific behavior I’ve observed in Gemini 3.0 (and other high-context models).

\ When you build from the ground up, you and the AI build the architecture step-by-step. You lay the foundation, then the framing, then the roof.

\ However, when you ask an LLM to pivot an existing application, it does not see the history of the code. It doesn't see the battle scars.

\

  • The original Drone code was broken into distinct, linear steps.
  • There were specific error-handling gates and wait states derived from previous failures.

\ Gemini 3.0, in an attempt to be efficient, flattened the architecture. It lumped distinct logical steps into singular, monolithic processes. On the surface, the code looked cleaner and more Pythonic. But in reality, it had removed the structural load-bearing walls that kept the application stable.

\ It glossed over the nuance. It assumed the code was a style guide, not a structural necessity.

The Paradox of Capability: Gemini 2.5 vs. 3.0

This project highlighted a counterintuitive reality: Gemini 2.5 was safer because the code it confidently spit out was truncated pseudo-code.

\ In previous versions, the outputs were structured to show you how you might go about building. You would then have to build a plan to build the guts inside the program. Sometimes, it could write the entire file. Sometimes, you had to go function by function.

\

  • Gemini 2.5 forced me to be the Architect. I had to go program-by-program, mapping out exactly what I wanted. I had to hold the AI's hand.
  • Gemini 3.0 has the speed and reasoning to do it all at once. It creates a believable illusion of a One-Shot Pivot.

\ Gemini 3.0 creates code that looks workable immediately but is structurally rotten inside. It skips the scaffolding phase.

Final Verdict

If you are looking to build a Generative Manufacturing Engine, or any complex system with LLMs, here are my final takeaways from the OpenForge experiment:

  1. Greenfield is Easy, Brownfield is Hard: LLMs excel at building from scratch. They are terrible at renovating complex, existing architectures without massive human hand-holding.
  2. Don't Refactor with Prompts: If you want to change the purpose of an app, don't ask the AI to rewrite this for X. Instead, map out the logic flow of the old app, and ask the AI to build a new app using that logic map.
  3. Architecture is Still King: You cannot view a codebase as a fluid document that can be morphed by an LLM. You must respect the scaffolding.

\ OpenForge proved that we can bridge the gap between vague user intent and physical engineering. We just can't take the human out of the architecture chair just yet.

\ That said, Gemini 3.0 is a massive leap from 2.5. Part of what I am exploring here is how to get the best out of a brand-new tool.

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment?

The post Is Doge Losing Steam As Traders Choose Pepeto For The Best Crypto Investment? appeared on BitcoinEthereumNews.com. Crypto News 17 September 2025 | 17:39 Is dogecoin really fading? As traders hunt the best crypto to buy now and weigh 2025 picks, Dogecoin (DOGE) still owns the meme coin spotlight, yet upside looks capped, today’s Dogecoin price prediction says as much. Attention is shifting to projects that blend culture with real on-chain tools. Buyers searching “best crypto to buy now” want shipped products, audits, and transparent tokenomics. That frames the true matchup: dogecoin vs. Pepeto. Enter Pepeto (PEPETO), an Ethereum-based memecoin with working rails: PepetoSwap, a zero-fee DEX, plus Pepeto Bridge for smooth cross-chain moves. By fusing story with tools people can use now, and speaking directly to crypto presale 2025 demand, Pepeto puts utility, clarity, and distribution in front. In a market where legacy meme coin leaders risk drifting on sentiment, Pepeto’s execution gives it a real seat in the “best crypto to buy now” debate. First, a quick look at why dogecoin may be losing altitude. Dogecoin Price Prediction: Is Doge Really Fading? Remember when dogecoin made crypto feel simple? In 2013, DOGE turned a meme into money and a loose forum into a movement. A decade on, the nonstop momentum has cooled; the backdrop is different, and the market is far more selective. With DOGE circling ~$0.268, the tape reads bearish-to-neutral for the next few weeks: hold the $0.26 shelf on daily closes and expect choppy range-trading toward $0.29–$0.30 where rallies keep stalling; lose $0.26 decisively and momentum often bleeds into $0.245 with risk of a deeper probe toward $0.22–$0.21; reclaim $0.30 on a clean daily close and the downside bias is likely neutralized, opening room for a squeeze into the low-$0.30s. Source: CoinMarketcap / TradingView Beyond the dogecoin price prediction, DOGE still centers on payments and lacks native smart contracts; ZK-proof verification is proposed,…
Share
BitcoinEthereumNews2025/09/18 00:14
United States Monthly Budget Statement registered at $-173B above expectations ($-205B) in November

United States Monthly Budget Statement registered at $-173B above expectations ($-205B) in November

The post United States Monthly Budget Statement registered at $-173B above expectations ($-205B) in November appeared on BitcoinEthereumNews.com. Information on these pages contains forward-looking statements that involve risks and uncertainties. Markets and instruments profiled on this page are for informational purposes only and should not in any way come across as a recommendation to buy or sell in these assets. You should do your own thorough research before making any investment decisions. FXStreet does not in any way guarantee that this information is free from mistakes, errors, or material misstatements. It also does not guarantee that this information is of a timely nature. Investing in Open Markets involves a great deal of risk, including the loss of all or a portion of your investment, as well as emotional distress. All risks, losses and costs associated with investing, including total loss of principal, are your responsibility. The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official policy or position of FXStreet nor its advertisers. The author will not be held responsible for information that is found at the end of links posted on this page. If not otherwise explicitly mentioned in the body of the article, at the time of writing, the author has no position in any stock mentioned in this article and no business relationship with any company mentioned. The author has not received compensation for writing this article, other than from FXStreet. FXStreet and the author do not provide personalized recommendations. The author makes no representations as to the accuracy, completeness, or suitability of this information. FXStreet and the author will not be liable for any errors, omissions or any losses, injuries or damages arising from this information and its display or use. Errors and omissions excepted. The author and FXStreet are not registered investment advisors and nothing in this article is intended to be investment…
Share
BitcoinEthereumNews2025/12/11 03:31