Discover how Bright Data optimize its Web Archive to handle petabytes of data in AWS. Learn how a $100,000 billing mistake revealed the trade-off between write speed, read speed, and cloud costs—and how we fixed it with a cost-effective Rearrange Pipeline. Spoiler: We are hiring!Discover how Bright Data optimize its Web Archive to handle petabytes of data in AWS. Learn how a $100,000 billing mistake revealed the trade-off between write speed, read speed, and cloud costs—and how we fixed it with a cost-effective Rearrange Pipeline. Spoiler: We are hiring!

Building a Petabyte-Scale Web Archive

2025/12/09 21:07

In an engineer’s ideal world, architecture is always beautiful. In the real world of high-scale systems, you have to make compromises. One of the fundamental problems an engineer must think about at the start is the vicious trade-off between Write Speed and Read Speed.

Usually, you sacrifice one for the other. But in our case, working with petabytes of data in AWS, this compromise didn’t hit our speed–it hit the wallet.

We built a system that wrote data perfectly, but every time it read from the archive, it burned through the budget in the most painful way imaginable. After all, reading petabytes from AWS costs money for data transfer, request counts, and storage class retrievals… A lot of money!

This is the story of how we optimized it to make it more efficient and cost-effective!

Part 0: How We Ended Up Spending $100,000 in AWS Fees!

True story: a few months back, one of our solution architects wanted to pull a sample export from a rare, low-traffic website to demonstrate the product to a potential client. Due to a bug in the API, the safety limit on file count wasn’t applied.

Because the data for this “rare” site was scattered across millions of archives alongside high-traffic sites, the system tried to restore nearly half of our entire historical storage to find those few pages.

That honest mistake ended up costing us nearly $100,000 in AWS fees!

Now, I fixed the API bug immediately (and added strict limits), but the architectural vulnerability remained. It was a ticking time bomb…

Let me tell you the story of the Bright Data Web Archive architecture: how I drove the system into the trap of “cheap” storage and how I climbed out using a Rearrange Pipeline.

Part 1: The “Write-First” Legacy

When I started working on the Web Archive, the system was already ingesting a massive data stream: millions of requests per minute, tens of terabytes per day. The foundational architecture was built with a primary goal: capture everything without data loss.

It relied on the most durable strategy for high-throughput systems: Append-only Log.

  1. Data (HTML, JSON) is buffered.
  2. Once the buffer hits ~300 MB, it is “sealed” into a TAR archive.
  3. The archive flies off to S3.
  4. After 3 days, files move to S3 Glacier Deep Archive.

For the ingestion phase, this design was flawless. Storing data in Deep Archive costs pennies, and the write throughput is virtually unlimited.

The Problem: That Pricing Nuance

The architecture worked perfectly for writing… until clients came asking for historical data. That’s when I faced a fundamental contradiction:

  • The System Writes by Time: An archive from 12:00 PM contains a mix of cnn.comgoogle.com, and shop.xyz.
  • The System Reads by Domain: The client asks: “Give me all pages from cnn.com for the last year.”

Here lies the mistake that inspired this article. Like many engineers, I’m used to thinking about latency, IOPS, and throughput. But I overlooked the AWS Glacier billing model.

I thought: “Well, retrieving a few thousand archives is slow (48 hours), but it’s not that expensive.”

The Reality: AWS charges not just for the API call, but for the volume of data restored ($ per GB retrieved).

The “Golden Byte” Effect

Imagine a client requests 1,000 pages from a single domain. Because the writing logic was chronological, these pages can be spread across 1,000 different TAR archives.

To give the client these 50 MB of useful data, a disaster occurs:

  1. The system has to trigger a Restore for 1,000 archives.
  2. It lifts 300 GB of data out of the “freezer” (1,000 archives × 300 MB).
  3. AWS bills us for restoring 300 GB.
  4. I extract the 50 MB required and throw away the other 299.95 GB 🤯.

We were paying to restore terabytes of trash just to extract grains of gold. It was a classic Data Locality problem that turned into a financial black hole.

Part 2: Fixing the Mistake: The Rearrange Pipeline

I couldn’t quickly change the ingestion method–the incoming stream is too parallel and massive to sort “on the fly” (though I am working on that), and I needed a solution that worked for already archived data, too.

So, I designed the Rearrange Pipeline, a background process that “defragments” the archive.

This is an asynchronous ETL (Extract, Transform, Load) process, with several critical core components:

  1. Selection: It makes no sense to sort data that clients aren’t asking for. Thus, I direct all new data into the pipeline, as well as data that clients have specifically asked to restore. We overpay for the retrieval the first time, but it never happens a second time.

    \

  2. Shuffling (Grouping): Multiple workers download unsorted files in parallel and organize buffers by domain. Since the system is asynchronous, I don’t worry about the incoming stream overloading memory. The workers handle the load at their own pace.

    \

  3. Rewriting: I write the sorted files back to S3 under a new prefix (to distinguish sorted files from raw ones).

  • Before: 2024/05/05/random_id_ts.tar → [cnn, google, zara, cnn]
  • After: 2024/05/05/cnn/random_id_ts.tar → [cnn, cnn, cnn...]
  1. Metadata Swap: In Snowflake, the metadata table is append-only. Doing MERGE INTO or UPDATE is prohibitively expensive.
  • The Solution: I found it was far more efficient to take all records for a specific day, write them to a separate table using a JOIN, delete the original day’s records, and insert the entire day back with the modified records. I managed to process 300+ days and 160+ billion UPDATE operations in just a few hours on a 4X-Large Snowflake warehouse.

The Result

This change radically altered the product’s economics:

  • Pinpoint Accuracy: Now, when a client asks for cnn.com, the system restores only the data where cnn.com lives.
  • Efficiency: Depending on the granularity of the request (entire domain vs. specific URLs via regex), I achieved a 10% to 80% reduction in “garbage data” retrieval (which is directly proportional to the cost).
  • New Capabilities: Beyond just saving money on dumps, this unlocked entirely new business use cases. Because retrieving historical data is no longer agonizingly expensive, we can now afford to extract massive datasets for training AI models, conducting long-term market research, and building knowledge bases for agentic AI systems to reason over (think specialized search engines). What was previously a financial suicide mission is now a standard operation.

We Are Hiring

Bright Data is scaling the Web Archive even further. If you enjoy:

  • High‑throughput distributed systems,
  • Data engineering at massive scale,
  • Building reliable pipelines under real‑world load,
  • Pushing Node.js to its absolute limits,
  • Solving problems that don’t appear in textbooks…

Then I’d love to talk.

We’re hiring strong Node.js engineers to help build the next generation of the Web Archive. Having data engineering and ETL experience is highly advantageous. Feel free to send your CV to [email protected].

More updates coming as I continue scaling the archive—and as I keep finding new and creative ways to break it!

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

American Bitcoin’s $5B Nasdaq Debut Puts Trump-Backed Miner in Crypto Spotlight

American Bitcoin’s $5B Nasdaq Debut Puts Trump-Backed Miner in Crypto Spotlight

The post American Bitcoin’s $5B Nasdaq Debut Puts Trump-Backed Miner in Crypto Spotlight appeared on BitcoinEthereumNews.com. Key Takeaways: American Bitcoin (ABTC) surged nearly 85% on its Nasdaq debut, briefly reaching a $5B valuation. The Trump family, alongside Hut 8 Mining, controls 98% of the newly merged crypto-mining entity. Eric Trump called Bitcoin “modern-day gold,” predicting it could reach $1 million per coin. American Bitcoin, a fast-rising crypto mining firm with strong political and institutional backing, has officially entered Wall Street. After merging with Gryphon Digital Mining, the company made its Nasdaq debut under the ticker ABTC, instantly drawing global attention to both its stock performance and its bold vision for Bitcoin’s future. Read More: Trump-Backed Crypto Firm Eyes Asia for Bold Bitcoin Expansion Nasdaq Debut: An Explosive First Day ABTC’s first day of trading proved as dramatic as expected. Shares surged almost 85% at the open, touching a peak of $14 before settling at lower levels by the close. That initial spike valued the company around $5 billion, positioning it as one of 2025’s most-watched listings. At the last session, ABTC has been trading at $7.28 per share, which is a small positive 2.97% per day. Although the price has decelerated since opening highs, analysts note that the company has been off to a strong start and early investor activity is a hard-to-find feat in a newly-launched crypto mining business. According to market watchers, the listing comes at a time of new momentum in the digital asset markets. With Bitcoin trading above $110,000 this quarter, American Bitcoin’s entry comes at a time when both institutional investors and retail traders are showing heightened interest in exposure to Bitcoin-linked equities. Ownership Structure: Trump Family and Hut 8 at the Helm Its management and ownership set up has increased the visibility of the company. The Trump family and the Canadian mining giant Hut 8 Mining jointly own 98 percent…
Share
BitcoinEthereumNews2025/09/18 01:33
CEO Sandeep Nailwal Shared Highlights About RWA on Polygon

CEO Sandeep Nailwal Shared Highlights About RWA on Polygon

The post CEO Sandeep Nailwal Shared Highlights About RWA on Polygon appeared on BitcoinEthereumNews.com. Polygon CEO Sandeep Nailwal highlighted Polygon’s lead in global bonds, Spiko US T-Bill, and Spiko Euro T-Bill. Polygon published an X post to share that its roadmap to GigaGas was still scaling. Sentiments around POL price were last seen to be bearish. Polygon CEO Sandeep Nailwal shared key pointers from the Dune and RWA.xyz report. These pertain to highlights about RWA on Polygon. Simultaneously, Polygon underlined its roadmap towards GigaGas. Sentiments around POL price were last seen fumbling under bearish emotions. Polygon CEO Sandeep Nailwal on Polygon RWA CEO Sandeep Nailwal highlighted three key points from the Dune and RWA.xyz report. The Chief Executive of Polygon maintained that Polygon PoS was hosting RWA TVL worth $1.13 billion across 269 assets plus 2,900 holders. Nailwal confirmed from the report that RWA was happening on Polygon. The Dune and https://t.co/W6WSFlHoQF report on RWA is out and it shows that RWA is happening on Polygon. Here are a few highlights: – Leading in Global Bonds: Polygon holds 62% share of tokenized global bonds (driven by Spiko’s euro MMF and Cashlink euro issues) – Spiko U.S.… — Sandeep | CEO, Polygon Foundation (※,※) (@sandeepnailwal) September 17, 2025 The X post published by Polygon CEO Sandeep Nailwal underlined that the ecosystem was leading in global bonds by holding a 62% share of tokenized global bonds. He further highlighted that Polygon was leading with Spiko US T-Bill at approximately 29% share of TVL along with Ethereum, adding that the ecosystem had more than 50% share in the number of holders. Finally, Sandeep highlighted from the report that there was a strong adoption for Spiko Euro T-Bill with 38% share of TVL. He added that 68% of returns were on Polygon across all the chains. Polygon Roadmap to GigaGas In a different update from Polygon, the community…
Share
BitcoinEthereumNews2025/09/18 01:10