Mathematicians routinely treat different product constructions—like (𝐴×𝐵) × 𝐶 (A×B)×C and 𝐴× (𝐵×𝐶) A×(B×C)—as identical, even though they’re only isomorphic. This piece explores how universal properties, monoidal structures, and the pentagon axiom resolve these ambiguities, and why relying on “obvious” identifications can make foundational arguments incomplete.Mathematicians routinely treat different product constructions—like (𝐴×𝐵) × 𝐶 (A×B)×C and 𝐴× (𝐵×𝐶) A×(B×C)—as identical, even though they’re only isomorphic. This piece explores how universal properties, monoidal structures, and the pentagon axiom resolve these ambiguities, and why relying on “obvious” identifications can make foundational arguments incomplete.

Category Theory Explains a Common Oversight in Everyday Mathematics, Study Finds

2025/12/10 21:00

Abstract

  1. Acknowledgements & Introduction

2. Universal properties

3. Products in practice

4. Universal properties in algebraic geometry

5. The problem with Grothendieck’s use of equality.

6. More on “canonical” maps

7. Canonical isomorphisms in more advanced mathematics

8. Summary And References

Products in Practice

When a mathematician writes X × Y , what do they mean? Is it a product in the sense of the universal property, or is it the “special” one X × Y consisting of ordered pairs? One might imagine that, to fix our ideas, it’s easiest to just choose the special one. On the other hand, a mathematician would almost certainly agree with the following claim

R 2 × R = R × R 2 = R 3 ;

\ It is as clear as the claim that 2 + 1 = 1 + 2 = 3. However, it seems to be impossible to set up the foundations of mathematics in such a way that all of these sets are literally equal. Using the model of products in the previous section, a typical element of R 2 × R looks like ((a, b), c) and a typical element of R × R 2 looks like (a,(b, c)). These two constructions clearly carry the same data, and yet equally clearly they are not identical; they are both different models for R 3 , as is the model consisting of ordered triples (a, b, c) defined for example as functions {1, 2, 3} → R. In particular, sets equipped with the product do not strictly speaking form a monoid (because (A × B) × C = A × (B × C) is strictly speaking false).

\ However all three of R 2 × R, R × R 2 and R 3 satisfy the universal property for a product of three copies of R, meaning that there are unique isomorphisms between these constructions. The category theorists would tell us that the category of sets equipped with the product can be made into a monoidal category, which means that we can write down the extra data of a collection of isomorphisms iABC : (A × B) × C ∼= A × (B × C) satisfying an equation called the pentagon axiom [Wik04a], which says that the two resulting natural ways of identifying ((A × B) × C) × D with A × (B × (C × D)) are equal. Unsurprisingly, in this example, both of the natural identifications send (((a, b), c), d) to (a,(b,(c, d))).

\ It is axioms like the pentagon axiom – “higher compatibitilies” between identifications of objects which mathematicians are prone to regard as equal anyway – which are so easy to forget. Which of ((A×B)×C)×D and A×(B×(C ×D)) does a mathematician mean when they write A × B × C × D? If one (strictly speaking, incorrectly) decides that the sets ((A × B) × C) × D and A × (B × (C × D))) are equal it doesn’t matter! There is only one way in which two sets can be equal (in contrast to there being many ways of being isomorphic, in general), and if we think this way then we deduce the pentagon axiom no longer needs to be checked! It is phenomena like this which gives rise to arguments which are strictly speaking incomplete, throughout the literature. Note of course that in every case known to the author, these arguments can be filled in; however the Lean community has only just started on algebraic geometry, and it will be interesting to see what happens as we progress.

\ I have mentioned the real numbers already. They are unique up to unique isomorphism, and mathematicians do a very good job of sticking to the universal property and developing calculus using only the completeness property of the reals rather than relying on any kind of explicit set-theoretic definition. When it comes to products however, we don’t to this. Consider for example φ : R 2 → R defined by φ(x, y) = y 2 + xy − x.

\ Mathematicians would have no objection to that definition – however it assumes the ordered pair model for the reals: it is a function from the product rather than from a product. If (P, π1, π2) is a product then we can define φP on P by φP (t) = π2(t) 2 + π1(t)π2(t) − π1(t). This looks rather more ungainly than the definition of φ above so is typically avoided. However, if one wants to identify sets like (A × B) × C and A × (B × C) on the basis that there is a unique isomorphism between them satisfying various basic properties, then one is strictly speaking forced to develop a theory of products of sets using only the universal property.

\

:::info Author: KEVIN BUZZARD

:::

:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

CEO Sandeep Nailwal Shared Highlights About RWA on Polygon

CEO Sandeep Nailwal Shared Highlights About RWA on Polygon

The post CEO Sandeep Nailwal Shared Highlights About RWA on Polygon appeared on BitcoinEthereumNews.com. Polygon CEO Sandeep Nailwal highlighted Polygon’s lead in global bonds, Spiko US T-Bill, and Spiko Euro T-Bill. Polygon published an X post to share that its roadmap to GigaGas was still scaling. Sentiments around POL price were last seen to be bearish. Polygon CEO Sandeep Nailwal shared key pointers from the Dune and RWA.xyz report. These pertain to highlights about RWA on Polygon. Simultaneously, Polygon underlined its roadmap towards GigaGas. Sentiments around POL price were last seen fumbling under bearish emotions. Polygon CEO Sandeep Nailwal on Polygon RWA CEO Sandeep Nailwal highlighted three key points from the Dune and RWA.xyz report. The Chief Executive of Polygon maintained that Polygon PoS was hosting RWA TVL worth $1.13 billion across 269 assets plus 2,900 holders. Nailwal confirmed from the report that RWA was happening on Polygon. The Dune and https://t.co/W6WSFlHoQF report on RWA is out and it shows that RWA is happening on Polygon. Here are a few highlights: – Leading in Global Bonds: Polygon holds 62% share of tokenized global bonds (driven by Spiko’s euro MMF and Cashlink euro issues) – Spiko U.S.… — Sandeep | CEO, Polygon Foundation (※,※) (@sandeepnailwal) September 17, 2025 The X post published by Polygon CEO Sandeep Nailwal underlined that the ecosystem was leading in global bonds by holding a 62% share of tokenized global bonds. He further highlighted that Polygon was leading with Spiko US T-Bill at approximately 29% share of TVL along with Ethereum, adding that the ecosystem had more than 50% share in the number of holders. Finally, Sandeep highlighted from the report that there was a strong adoption for Spiko Euro T-Bill with 38% share of TVL. He added that 68% of returns were on Polygon across all the chains. Polygon Roadmap to GigaGas In a different update from Polygon, the community…
Share
BitcoinEthereumNews2025/09/18 01:10
U.S. Seizes Oil Tanker Off Venezuela Coast

U.S. Seizes Oil Tanker Off Venezuela Coast

The post U.S. Seizes Oil Tanker Off Venezuela Coast appeared on BitcoinEthereumNews.com. Topline The U.S. seized an oil tanker off the coast of Venezuela, President Donald Trump said Wednesday, the latest military incursion near Venezuela as the Trump administration pressures Venezuelan President Nicolas Maduro to resign. A Venezuelan navy patrol boat escorts Panamanian flagged crude oil tanker Yoselin near the El Palito refinery in Puerto Cabello, Venezuela on November 11, 2025. (Photo by JUAN CARLOS HERNANDEZ/AFP via Getty Images) AFP via Getty Images Key Facts Trump confirmed the news reported earlier in the day by Reuters, telling business leaders at the White House the tanker was “the largest one ever seized.” Details of the seizure led by the U.S. Coast Guard—including the name of the tanker, its country of origin and where it took place—are unclear, according to Reuters. The price of oil futures rose 56 cents, to $58.93 per barrel, after the seizure was made public. The seizure comes amid an increase in U.S. military presence off the coast of Venezuela and a series of attacks on alleged drug-carrying vessels in the Caribbean. Big Number 303 billion barrels. That’s the total amount of oil preserves Venezuela has, according to the Oil & Gas Journal, amounting to 17% of the world’s oil supply. Read More Source: https://www.forbes.com/sites/saradorn/2025/12/10/us-seizes-oil-tanker-near-venezuela-as-tensions-rise/
Share
BitcoinEthereumNews2025/12/11 05:10