Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.Dockerized Android is a Docker-based virtualization platform that lets cyber-range designers simulate mobile attack and defense scenarios efficiently. Its modular design allows features like Bluetooth and GPS emulation to be toggled via Docker Compose, enhancing automation and realism. While best run on Linux, the system promises future cloud support and stronger security integrations, paving the way for more dynamic and realistic cybersecurity training environments.

Building Smarter Cyber Ranges with Dockerized Android

:::info Authors:

(1) Daniele Capone, SecSI srl, Napoli, Italy ([email protected]);

(2) Francesco Caturano, Dept. of Electrical Engineering and Information, Technology University of Napoli Federico II, Napoli, Italy ([email protected])

(3) Angelo Delicato, SecSI srl, Napoli, Italy ([email protected]);

(4) Gaetano Perrone, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy ([email protected])

(5) Simon Pietro Romano, Dept. of Electrical Engineering and Information Technology, University of Napoli Federico II, Napoli, Italy ([email protected]).

:::

Abstract and I. Introduction

II. Related Work

III. Dockerized Android: Design

IV. Dockerized Android Architecture

V. Evaluation

VI. Conclusion and Future Developments, and References

VI. CONCLUSION AND FUTURE DEVELOPMENTS

In this work, we have described Dockerized Android, a platform that supports cyber-range designers in realizing mobile virtual scenarios. The application is based on Docker, i.e., a container-based virtualization framework extensively adopted in the cyber-range field for several benefits already mentioned. We described the main components and showed how it is possible to realize a complex cyber kill-chain scenario that involves the utilization of Bluetooth components. The architecture has been conceived at the outset as an extensible one. Its feature set can be dynamically enabled or disabled through the docker-compose creator, and some fine-grained options can be configured to customize the scenarios. The strength of this system is its ability to quickly run a mobile component through Docker, with many interesting features out of the box. Furthermore, the centralization of several components increases the overall usability level. The cons are all related to compatibility issues with Windows and OS X when running the Core for Emulator. While the former will probably be solved with the next updates, the latter is not solvable without significant changes to the OS X implementation. Another limitation is the lack of support for emulating some hardware components, e.g., Bluetooth. For these reasons, the Linux environment as a host machine is strongly recommended. We will also assess the potential benefits of using Dockerized Android in cloud-based environments in future works. Other improvements include the full integration of security-based features in the Android Emulator. For example, the GPS location could be useful to simulate a realistic route traveled by a simulated user. In recent works, cyber ranges are configured by using the high-level SDL (Specification and Description Language) representation [8]. Integrating this language in Dockerized Android is relatively easy, as every feature is set through Docker environment variables. Additional efforts will be focused on improving automation features, such as the design of an event-based architecture to simulate complex sequential actions involving human interaction.

REFERENCES

[1] Jan Vykopal et al. “Lessons learned from complex hands-on defence exercises in a cyber range”. In: 2017 IEEE Frontiers in Education Conference (FIE). 2017, pp. 1–8. DOI: 10.1109/FIE.2017.8190713.

\ [2] Adam McNeil and W. Stuart Jones. Mobile Malware is Surging in Europe: A Look at the Biggest Threats. https://www.proofpoint.com/us/blog/email-and-cloudthreats/mobile-malware- surging-europe-look- biggestthreats. Online; 14-May-2022. 2022.

\ [3] René Mayrhofer et al. “The Android Platform Security Model”. In: ACM Transactions on Privacy and Security 24.3 (Aug. 2021), pp. 1–35. DOI: 10 . 1145/ 3448609. URL: https://doi.org/10.1145/3448609.

\ [4] Ryotaro Nakata and Akira Otsuka. “CyExec*: A HighPerformance Container-Based Cyber Range With Scenario Randomization”. In: IEEE Access 9 (2021), pp. 109095–109114. DOI: 10 . 1109 / ACCESS . 2021 . 3101245.

\ [5] Ryotaro Nakata and Akira Otsuka. Evaluation of vulnerability reproducibility in container-based Cyber Range. 2020. DOI: 10.48550/ARXIV.2010.16024. URL: https: //arxiv.org/abs/2010.16024.

\ [6] Francesco Caturano, Gaetano Perrone, and Simon Pietro Romano. “Capturing flags in a dynamically deployed microservices-based heterogeneous environment”. In: 2020 Principles, Systems and Applications of IP Telecommunications (IPTComm). 2020, pp. 1–7. DOI: 10.1109/IPTComm50535.2020.9261519.

\ [7] Muhammad Mudassar Yamin, Basel Katt, and Vasileios Gkioulos. “Cyber ranges and security testbeds: Scenarios, functions, tools and architecture”. In: Computers & Security 88 (Jan. 2020), p. 101636. DOI: 10. 1016/ J. COSE.2019.101636.

\ [8] Enrico Russo, Luca Verderame, and Alessio Merlo. “Enabling Next-Generation Cyber Ranges with Mobile Security Components”. In: IFIP International Conference on Testing Software and Systems. Springer, 2020, pp. 150–165.

\ [9] Giuseppe Trotta Andrea Pierini. From APK to Golden Ticket. https://www.exploit-db.com/docs/english/44032- from- apk-to- golden-ticket.pdf. [Online; accessed 01- March-2021]. 2017.

\ [10] Genymotion. Android as a Service. https : / / www . genymotion.com/. [Online; accessed 1-March-2021].

\ [11] Corellium. ARM Device Virtualization. https : / / corellium.com/. [Online; accessed 10-March-2021].

\ [12] Android Emulator. https : / / developer . android . com / studio/run/emulator. Accessed: 11-01-2021.

\ [13] thyrlian. AndroidSDK. https : / / github . com / thyrlian / AndroidSDK. [Online; accessed 10-March-2021].

\ [14] budtmo. docker-android. https:// github. com/ budtmo/ docker-android. [Online; accessed 10-March-2021].

\ [15] bitrise-io. android. https://github.com/bitrise-io/android. [Online; accessed 10-March-2021].

\ [16] MobSF. Mobile Security Framework. https : / / www . github . com / MobSF / Mobile - Security - Framework - MobSF. [Online; accessed 1-March-2021].

\ [17] Dockerfile best practices. https : / / docs . docker. com / develop / develop - images / dockerfile _ best - practices/. Accessed: 13-02-2021.

\ [18] Flaticon. Free vector icons. https://www.flaticon.com/. [Online; accessed 17-April-2021].

\ [19] Frida. Frida. https://frida.re/. Online; 13-May-2022.

\ [20] Anonymized authors. Dockerized Android github repo. . In order to adhere to the double-blind review principle, the github repo information has been obfuscated and will be made available if and when the paper is accepted.

\ [21] Android-Exploits. https : / / github . com / sundaysec / Android - Exploits / blob / master / remote / 44242 . md. [Online; accessed 19-April-2021].

\ [22] Ben Seri and Gregory Vishnepolsky. BlueBorne - The dangers of Bluetooth implementations: Unveiling zero day vulnerabilities and security flaws in modern Bluetooth stacks. Tech. rep. Armis, 2017.

\ [23] Armis Security. BlueBorne. https://www.armis.com/ research/blueborne/. Online; 13-May-2022. 2017.

\

:::info This paper is available on arxiv under CC by-SA 4.0 Deed (Attribution-Sahrealike 4.0 International license.

:::

\

Market Opportunity
CyberConnect Logo
CyberConnect Price(CYBER)
$0.7635
$0.7635$0.7635
+0.06%
USD
CyberConnect (CYBER) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact [email protected] for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Quid Miner cloud mining leads the passive income model

Quid Miner cloud mining leads the passive income model

The post Quid Miner cloud mining leads the passive income model appeared on BitcoinEthereumNews.com. Disclosure: This article does not represent investment advice. The content and materials featured on this page are for educational purposes only. As ETFs bring institutions into crypto, Quid Miner drives mainstream adoption with green, compliant cloud mining. Summary Quid Miner offers AI-optimized cloud mining with massive payouts, no hardware costs, and global coverage in 180+ countries. Quid Miner uses audits, renewable energy, and third-party pools for secure, transparent mining. Supporting BTC, ETH, XRP, SOL, DOGE & more, Quid Miner delivers efficient, ESG-aligned mining for millions of users. With the approval of Bitcoin (BTC) and Ethereum (ETH) ETFs and the impending launch of an XRP ETF, the crypto market has once again entered the spotlight.  ETFs have opened the door to regulatory compliance for institutional investors, but they primarily focus on price exposure and fail to meet investors’ needs for stable cash flow in highly volatile markets. Against the backdrop of tightening regulations and the energy transition, cloud mining is moving from a niche endeavor to a mainstream one. Quid Miner, headquartered in the UK, is being considered by more and more European and American investors due to its compliance, green energy and automation advantages. Why cloud mining is gaining attention Traditional mining requires expensive hardware and significant electricity consumption, making it unsuitable for average investors.  Cloud mining simplifies the process through a contract-based model, allowing users to access a global computing network without hardware or electricity costs. Daily income is automatically settled and distributed to the account, which is closer to the interest or coupon in traditional finance and is therefore regarded as a new cash flow model. Quid Miner’s positioning Founded in 2010, Quid Miner officially entered the cloud mining market in 2018 and currently operates in over 180 countries worldwide. The platform utilizes a transparent contract mechanism, combined…
Share
BitcoinEthereumNews2025/09/21 00:05
Vitalik: The crypto industry needs to address three major issues to develop better decentralized stablecoins.

Vitalik: The crypto industry needs to address three major issues to develop better decentralized stablecoins.

PANews reported on January 11 that Vitalik Buterin stated that the crypto industry currently needs better decentralized stablecoins, and three issues remain to
Share
PANews2026/01/11 15:47
Yingda Securities: The RMB exchange rate is likely to appreciate steadily in 2026.

Yingda Securities: The RMB exchange rate is likely to appreciate steadily in 2026.

PANews reported on January 11 that, according to Zhitong Finance, the 2026 China Chief Economist Forum Annual Meeting was held in Shanghai from January 10-11, with
Share
PANews2026/01/11 15:51