This section provides the detailed theoretical derivation for the KC-EMA mechanism in Instance-Incremental LearningThis section provides the detailed theoretical derivation for the KC-EMA mechanism in Instance-Incremental Learning

KC-EMA Mechanism: Theoretical Analysis and Derivation for IIL

2025/11/07 23:30

Abstract and 1 Introduction

  1. Related works

  2. Problem setting

  3. Methodology

    4.1. Decision boundary-aware distillation

    4.2. Knowledge consolidation

  4. Experimental results and 5.1. Experiment Setup

    5.2. Comparison with SOTA methods

    5.3. Ablation study

  5. Conclusion and future work and References

    \

Supplementary Material

  1. Details of the theoretical analysis on KCEMA mechanism in IIL
  2. Algorithm overview
  3. Dataset details
  4. Implementation details
  5. Visualization of dusted input images
  6. More experimental results

7. Details of the theoretical analysis on KCEMA mechanism in IIL

In Sec. 4.3 of the manuscript, we theoretically analyze the feasibility of applying a model EMA-like mechanism in the IIL. Here, gives more derivation details of the Eq. 7.

\

\

\ The derivative of the old task(s) and the new task on the teacher model in current IIL phase is

\

\ Therefore, we get Eq. (7) and many conclusions can be drawn based on it as we present in the manuscript. Notably, as we assume the student is fully trained on new data, we set a freezing period during which we only train the student without implementing KC-EMA. In the manuscript, we empirically set the freezing period to 10 epochs.

\ Limitation. Our method may accumulate errors after a long consecutive IIL tasks. For example, in the ith IIL task, the old model should consider the base task and the previous i − 1 IIL task. The old task’s derivative on the parameters of teacher becomes

\

\

:::info Authors:

(1) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(2) Weifu Fu, Tencent Youtu Lab;

(3) Yuhuan Lin, Tencent Youtu Lab;

(4) Jialin Li, Tencent Youtu Lab;

(5) Yifeng Zhou, Tencent Youtu Lab;

(6) Yong Liu, Tencent Youtu Lab;

(7) Qiang Nie, Hong Kong University of Science and Technology (Guangzhou);

(8) Chengjie Wang, Tencent Youtu Lab.

:::


:::info This paper is available on arxiv under CC BY-NC-ND 4.0 Deed (Attribution-Noncommercial-Noderivs 4.0 International) license.

:::

\

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.