The post Character.AI’s Kaiju: Scaling Conversational Models with Efficiency and Safety appeared on BitcoinEthereumNews.com. Jessie A Ellis Nov 07, 2025 12:54 Character.AI’s Kaiju models offer a scalable and efficient solution for conversational AI, focusing on safety and engagement through innovative architectural features. Character.AI is making strides in the field of conversational AI with its Kaiju models, which are designed to handle millions of interactions daily while prioritizing safety and engagement. According to the Character.AI Blog, the Kaiju models are part of a family of in-house large language models (LLMs) that leverage advanced architectural efficiencies. Architectural Innovations Kaiju models are built with a dense transformer architecture and incorporate several efficiency optimizations. Notably, these models utilize int8 quantization to enhance processing speed and efficiency. The models are available in three sizes—Small (13 billion parameters), Medium (34 billion), and Large (110 billion)—and are designed to maintain a balance between performance and resource utilization. Multiquery and Sliding Window Attention One of the defining features of Kaiju models is the use of Multiquery Attention (MQA), which reduces the per-token key-value cache size, thus improving inference efficiency. While MQA can negatively impact some artificial general intelligence (AGI) benchmarks, its efficiency gains outweigh the drawbacks for Character.AI’s specific use cases. The models also employ sliding window attention to decrease the computational load, especially in scenarios involving long-context processing. This approach ensures that the models remain efficient without sacrificing quality in long-context retrieval tasks. Quantization Aware Training Kaiju models are trained using Quantization Aware Training (QAT), which helps maintain high accuracy levels while speeding up the training process significantly. This method allows the models to achieve bf16-level accuracy while training up to 30% faster. Safety and Alignment Safety is a critical component of the Kaiju models. Before deployment, each model undergoes a rigorous multi-phase safety and alignment process, which includes supervised fine-tuning and reinforcement… The post Character.AI’s Kaiju: Scaling Conversational Models with Efficiency and Safety appeared on BitcoinEthereumNews.com. Jessie A Ellis Nov 07, 2025 12:54 Character.AI’s Kaiju models offer a scalable and efficient solution for conversational AI, focusing on safety and engagement through innovative architectural features. Character.AI is making strides in the field of conversational AI with its Kaiju models, which are designed to handle millions of interactions daily while prioritizing safety and engagement. According to the Character.AI Blog, the Kaiju models are part of a family of in-house large language models (LLMs) that leverage advanced architectural efficiencies. Architectural Innovations Kaiju models are built with a dense transformer architecture and incorporate several efficiency optimizations. Notably, these models utilize int8 quantization to enhance processing speed and efficiency. The models are available in three sizes—Small (13 billion parameters), Medium (34 billion), and Large (110 billion)—and are designed to maintain a balance between performance and resource utilization. Multiquery and Sliding Window Attention One of the defining features of Kaiju models is the use of Multiquery Attention (MQA), which reduces the per-token key-value cache size, thus improving inference efficiency. While MQA can negatively impact some artificial general intelligence (AGI) benchmarks, its efficiency gains outweigh the drawbacks for Character.AI’s specific use cases. The models also employ sliding window attention to decrease the computational load, especially in scenarios involving long-context processing. This approach ensures that the models remain efficient without sacrificing quality in long-context retrieval tasks. Quantization Aware Training Kaiju models are trained using Quantization Aware Training (QAT), which helps maintain high accuracy levels while speeding up the training process significantly. This method allows the models to achieve bf16-level accuracy while training up to 30% faster. Safety and Alignment Safety is a critical component of the Kaiju models. Before deployment, each model undergoes a rigorous multi-phase safety and alignment process, which includes supervised fine-tuning and reinforcement…

Character.AI’s Kaiju: Scaling Conversational Models with Efficiency and Safety



Jessie A Ellis
Nov 07, 2025 12:54

Character.AI’s Kaiju models offer a scalable and efficient solution for conversational AI, focusing on safety and engagement through innovative architectural features.

Character.AI is making strides in the field of conversational AI with its Kaiju models, which are designed to handle millions of interactions daily while prioritizing safety and engagement. According to the Character.AI Blog, the Kaiju models are part of a family of in-house large language models (LLMs) that leverage advanced architectural efficiencies.

Architectural Innovations

Kaiju models are built with a dense transformer architecture and incorporate several efficiency optimizations. Notably, these models utilize int8 quantization to enhance processing speed and efficiency. The models are available in three sizes—Small (13 billion parameters), Medium (34 billion), and Large (110 billion)—and are designed to maintain a balance between performance and resource utilization.

Multiquery and Sliding Window Attention

One of the defining features of Kaiju models is the use of Multiquery Attention (MQA), which reduces the per-token key-value cache size, thus improving inference efficiency. While MQA can negatively impact some artificial general intelligence (AGI) benchmarks, its efficiency gains outweigh the drawbacks for Character.AI’s specific use cases.

The models also employ sliding window attention to decrease the computational load, especially in scenarios involving long-context processing. This approach ensures that the models remain efficient without sacrificing quality in long-context retrieval tasks.

Quantization Aware Training

Kaiju models are trained using Quantization Aware Training (QAT), which helps maintain high accuracy levels while speeding up the training process significantly. This method allows the models to achieve bf16-level accuracy while training up to 30% faster.

Safety and Alignment

Safety is a critical component of the Kaiju models. Before deployment, each model undergoes a rigorous multi-phase safety and alignment process, which includes supervised fine-tuning and reinforcement learning based on user feedback. Additionally, the models feature an optional classifier head that evaluates the safety of inputs, enhancing the robustness of the conversational AI.

Future Directions

As Character.AI continues to innovate, the focus remains on enhancing the deployment efficiency, engagement, and safety of its models. The team is committed to advancing open-source large language models (LLMs) and is actively seeking engineers and researchers to join their efforts in creating more dynamic and human-centered AI systems.

Image source: Shutterstock

Source: https://blockchain.news/news/character-ai-kaiju-scaling-conversational-models

Piyasa Fırsatı
Sleepless AI Logosu
Sleepless AI Fiyatı(AI)
$0.03804
$0.03804$0.03804
-0.62%
USD
Sleepless AI (AI) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

The Channel Factories We’ve Been Waiting For

The Channel Factories We’ve Been Waiting For

The post The Channel Factories We’ve Been Waiting For appeared on BitcoinEthereumNews.com. Visions of future technology are often prescient about the broad strokes while flubbing the details. The tablets in “2001: A Space Odyssey” do indeed look like iPads, but you never see the astronauts paying for subscriptions or wasting hours on Candy Crush.  Channel factories are one vision that arose early in the history of the Lightning Network to address some challenges that Lightning has faced from the beginning. Despite having grown to become Bitcoin’s most successful layer-2 scaling solution, with instant and low-fee payments, Lightning’s scale is limited by its reliance on payment channels. Although Lightning shifts most transactions off-chain, each payment channel still requires an on-chain transaction to open and (usually) another to close. As adoption grows, pressure on the blockchain grows with it. The need for a more scalable approach to managing channels is clear. Channel factories were supposed to meet this need, but where are they? In 2025, subnetworks are emerging that revive the impetus of channel factories with some new details that vastly increase their potential. They are natively interoperable with Lightning and achieve greater scale by allowing a group of participants to open a shared multisig UTXO and create multiple bilateral channels, which reduces the number of on-chain transactions and improves capital efficiency. Achieving greater scale by reducing complexity, Ark and Spark perform the same function as traditional channel factories with new designs and additional capabilities based on shared UTXOs.  Channel Factories 101 Channel factories have been around since the inception of Lightning. A factory is a multiparty contract where multiple users (not just two, as in a Dryja-Poon channel) cooperatively lock funds in a single multisig UTXO. They can open, close and update channels off-chain without updating the blockchain for each operation. Only when participants leave or the factory dissolves is an on-chain transaction…
Paylaş
BitcoinEthereumNews2025/09/18 00:09
Wyoming-based crypto bank Custodia files rehearing petition against Fed

Wyoming-based crypto bank Custodia files rehearing petition against Fed

The post Wyoming-based crypto bank Custodia files rehearing petition against Fed appeared on BitcoinEthereumNews.com. A Wyoming-based crypto bank has filed another
Paylaş
BitcoinEthereumNews2025/12/16 22:06
US economy adds 64,000 jobs in November but unemployment rate climbs to 4.6%

US economy adds 64,000 jobs in November but unemployment rate climbs to 4.6%

The post US economy adds 64,000 jobs in November but unemployment rate climbs to 4.6% appeared on BitcoinEthereumNews.com. The economy moved in two directions at
Paylaş
BitcoinEthereumNews2025/12/16 22:18