Most monitoring tools only tell you when something is already broken. But what if you could find issues before they become outages? I just published a deep-dive on using AIOps for proactive anomaly detection. This isn't just theory - it's a complete, hands-on tutorial with the working code you need to try it yourself. The stack: - Infrastructure: Defined with modern IAC tools: Terraform and Terragrunt - Observability: Instrumented with the OpenTelemetry - Analysis: Powered by AWS DevOps Guru.Most monitoring tools only tell you when something is already broken. But what if you could find issues before they become outages? I just published a deep-dive on using AIOps for proactive anomaly detection. This isn't just theory - it's a complete, hands-on tutorial with the working code you need to try it yourself. The stack: - Infrastructure: Defined with modern IAC tools: Terraform and Terragrunt - Observability: Instrumented with the OpenTelemetry - Analysis: Powered by AWS DevOps Guru.

Goodbye Manual Monitoring: How AIOps Spots Problems Before You Do

Limitation of the Traditional Monitoring

The management of modern distributed applications has become increasingly complex. Using traditional monitoring tools, which rely mainly on manual analysis, is insufficient for ensuring the availability and performance demanded by microservices or serverless topologies.

One of the main problems with traditional monitoring is the high volume and variety of telemetry data generated by IT environments. This includes metrics, logs, and traces, which in an ideal world should be consolidated on a single monitoring dashboard to allow observation of the entire system. Another problem is static thresholds for alarms. Setting them too low will generate a high volume of false positives, while setting them too high will fail to detect significant performance degradation.

To solve these problems, organizations are shifting to an intelligent, automated, and predictive solution known as AIOps. Instead of relying on human operators to manually connect the dots, AIOps platforms are designed to ingest and analyze these vast datasets in real time.

In this article, we will learn how AIOps platforms are capable of proactive anomaly detection—its most fundamental capability - as well as root cause analysis, prediction, and alert generation.


The Technology Stack

The solution detailed in this article is a combination of three synergistic pillars:

  1. A managed AIOps platform that provides analytical intelligence. We will use AWS Guru, which is the core of our solution and acts as its "AIOps brain." AWS Guru is a managed service that leverages machine learning models built and trained by AWS experts. A key design principle is to make AIOps accessible to specialists without special machine learning expertise. Its primary function is to detect operational issues or anomalies and produce high-level insights instead of a stream of raw, uncorrelated alerts. These insights include related log snippets, a detailed analysis with a possible root cause, and actionable steps to diagnose and remediate the issue.
  2. An Open-Standard observability framework that supplies high-quality telemetry data and provides a unified set of APIs, SDKs, and tools to generate, collect, and export it. The importance of OpenTelemetry lies in two principles: standardization and vendor neutrality. The benefit of using OpenTelemetry is that if we want to switch to a different AIOps tool, we can just redirect the telemetry stream.
  3. A Serverless Application that is an example of a modern and dynamic microservice topology.

The complete architectural solution for a proposed telemetry pipeline can be observed on the below diagram.

Practical Implementation

It’s important to understand that AWS Guru does not collect any telemetry data itself but is configured to monitor and continuously analyze resources produced by the Application and identified by specific tags.

To give a reader a better understanding in this section we provide a comprehensive guide on how to implement the proposed solution and further in the Experiment section we will see on how to instrument it. The following structure of a git repository aligns with IAC best practices:

. ├── demo │   ├── envs │   │   └── dev │   │   ├── env.hcl # Environment-specific configuration that sets the environment name │   │   ├── api_gateway │   │   │   └── terragrunt.hcl │   │   ├── devopsguru │   │   │   └── terragrunt.hcl │   │   ├── dynamodb │   │   │   └── terragrunt.hcl │   │   ├── iam │   │   │   └── terragrunt.hcl │   │   └── serverless_app │   │   └── terragrunt.hcl │   └── project.hcl # Project-level configuration defining `app_name_prefix` and `project_name` used across all environments ├── root.hcl # Root Terragrunt configuration that generates AWS provider blocks and configures S3 backend ├── src │   ├── app.py # Lambda handler function with OpenTelemetry instrumentation │   ├── requirements.txt │   └── collector.yaml └── terraform └── modules # Infrastructure Modules ├── api_gateway ├── devopsguru ├── dynamodb └── iam

:::info This Modular (Terragrunt) Approach has the following Benefits:

  • True environment isolation: each environment (dev, prod, etc.) has its own state, config, and outputs.
  • All major AWS resources (Lambda, API Gateway, DynamoDB, IAM, DevOps Guru) are reusable Terraform modules in terraform/modules/.
  • Easy to extend for new AWS services or environments with minimal duplication.

:::

:::tip The full repository can be found here: https://github.com/kirPoNik/aws-aiops-detection-with-guru​

:::

The Lambda function (code in app.py) receives requests from API Gateway, generates an unique ID and put an item to the Dynamo DB Table. It also contains the logic to inject a "gray failure", which will be required for our experiment, see the code snipped with the Key Logic below:

import os import time import random import boto3 import uuid # --- CONFIGURATION FOR GRAY FAILURE SIMULATION --- # This environment variable acts as our feature flag for the experiment INJECT_LATENCY = os.environ.get("INJECT_LATENCY", "false").lower() == "true" MIN_LATENCY_MS = 150 # Minimum artificial latency in milliseconds MAX_LATENCY_MS = 500 # Maximum artificial latency in milliseconds def handler(event, context): """ Handles requests and optionally injects a variable sleep to simulate performance degradation. """ # This is the core logic for our "gray failure" simulation if INJECT_LATENCY: latency_seconds = random.randint(MIN_LATENCY_MS, MAX_LATENCY_MS) / 1000.0 time.sleep(latency_seconds) # The function's primary business logic is to write an item to DynamoDB try: table.put_item( Item={ "id": str(uuid.uuid4()), "created_at": int(time.time()) } ) # ... returns a successful response ... except Exception as e: # ... returns an error response ...

and the collector configuration ( in collector.yaml), that defines pipelines to send traces to AWS X-Ray and metrics to Amazon CloudWatch, see the Key Logic below:

# This file configures the OTel Collector in the ADOT layer exporters: # Send trace data to AWS X-Ray awsxray: # Send metrics to CloudWatch using the Embedded Metric Format (EMF) awsemf: service: pipelines: # The pipeline for traces: receive data -> export to X-Ray traces: receivers: [otlp] exporters: [awsxray] # The pipeline for metrics: receive data -> export to CloudWatch metrics: receivers: [otlp] exporters: [awsemf]

Simulating Failure and Generating Insights

:::info The Experiment section

:::

Step 1: Deploy the Stack

In the demo/envs/dev directory, run the usual commands:

terragrunt init --all terragrunt plan --all terragrunt apply --all

Grab the API endpoint from the output and save it.

export API_URL=$(terragrunt output -json --all \ | jq -r 'to_entries[] | select(.key \ | test("api_endpoint")) | .value.value')

:::tip You need to enable AWS DevOps Guru and wait 15-90 minutes for Discovering applications and resources

:::

Step 2: Establish a Baseline

DevOps Guru needs to learn what "normal" looks like. Let's give it some healthy traffic. We'll use hey, a simple load testing tool perfect for this job.

Run a light load for a few hours. This gives the ML models plenty of data to build a solid baseline.

# Run for 4 hours at 5 requests per second hey -z 4h -q 5 -m POST "$API_URL"

:::tip Use GNU Screen to run this in background

:::

Step 3: Inject the Failure

Now for the fun part. We'll introduce our "gray failure" - a subtle slowdown that a simple threshold alarm would likely miss.

In demo/envs/dev/serverless_app/terragrunt.hcl, add a new INJECT_LATENCY to our Lambda function's environment variable:

environment_variables = { TABLE_NAME = dependency.dynamodb.outputs.table_name AWS_LAMBDA_EXEC_WRAPPER = "/opt/otel-instrument" OPENTELEMETRY_COLLECTOR_CONFIG_URI = "/var/task/collector.yaml" INJECT_LATENCY = "true" # <-- Change this to true }

Apply the change. This quick deployment is an important event that DevOps Guru will notice.

terragrunt apply --all

Step 4: Generate Bad Traffic

Run the same load test again. This time, every request will have that extra, variable delay.

# Run for at least an hour to generate enough bad data hey -z 1h -q 5 -m POST "$API_URL"

Our app is now performing worse than its baseline. Let's see if DevOps Guru noticed.

After 30-60 minutes of bad traffic, an "insight" popped up in the DevOps Guru console.

This is the real value of AIOps. A standard CloudWatch alarm would have just said, "Latency is high." DevOps Guru said, "Latency is high, and it started right after you deployed this change."

Conclusion

This experiment shows a clear path away from reactive firefighting. By pairing a standard observability framework like OpenTelemetry with an AIOps engine like AWS DevOps Guru, we can build systems that help us find and fix problems before they become disasters.

The big takeaway is correlation. The magic wasn't just spotting the latency spike; it was automatically linking it to the deployment. That's the jump from raw data to real insight.

The future of ops isn't about more dashboards. It's about fewer, smarter alerts that tell you what's wrong, why it's wrong, and how to fix it.

Resources

  • Github Repository: https://github.com/kirPoNik/aws-aiops-detection-with-guru
  • AWS DevOps Guru Official Page
  • OpenTelemetry Official Documentation:
  • AWS Distro for OpenTelemetry (ADOT) for Lambda
  • hey - HTTP Load Generator:

\

Piyasa Fırsatı
DeepBook Logosu
DeepBook Fiyatı(DEEP)
$0.034751
$0.034751$0.034751
-5.47%
USD
DeepBook (DEEP) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference

The post Ethereum unveils roadmap focusing on scaling, interoperability, and security at Japan Dev Conference appeared on BitcoinEthereumNews.com. Key Takeaways Ethereum’s new roadmap was presented by Vitalik Buterin at the Japan Dev Conference. Short-term priorities include Layer 1 scaling and raising gas limits to enhance transaction throughput. Vitalik Buterin presented Ethereum’s development roadmap at the Japan Dev Conference today, outlining the blockchain platform’s priorities across multiple timeframes. The short-term goals focus on scaling solutions and increasing Layer 1 gas limits to improve transaction capacity. Mid-term objectives target enhanced cross-Layer 2 interoperability and faster network responsiveness to create a more seamless user experience across different scaling solutions. The long-term vision emphasizes building a secure, simple, quantum-resistant, and formally verified minimalist Ethereum network. This approach aims to future-proof the platform against emerging technological threats while maintaining its core functionality. The roadmap presentation comes as Ethereum continues to compete with other blockchain platforms for market share in the smart contract and decentralized application space. Source: https://cryptobriefing.com/ethereum-roadmap-scaling-interoperability-security-japan/
Paylaş
BitcoinEthereumNews2025/09/18 00:25
MMDA, sleep health organization launch drowsy driving campaign ahead of holidays

MMDA, sleep health organization launch drowsy driving campaign ahead of holidays

The Metro Manila Development Authority (MMDA) and the Philippine Society of Sleep Medicine (PSSM) on Wednesday launch an awareness campaign to prevent drowsy driving
Paylaş
Bworldonline2025/12/18 12:05
A Netflix ‘KPop Demon Hunters’ Short Film Has Been Rated For Release

A Netflix ‘KPop Demon Hunters’ Short Film Has Been Rated For Release

The post A Netflix ‘KPop Demon Hunters’ Short Film Has Been Rated For Release appeared on BitcoinEthereumNews.com. KPop Demon Hunters Netflix Everyone has wondered what may be the next step for KPop Demon Hunters as an IP, given its record-breaking success on Netflix. Now, the answer may be something exactly no one predicted. According to a new filing with the MPA, something called Debut: A KPop Demon Hunters Story has been rated PG by the ratings body. It’s listed alongside some other films, and this is obviously something that has not been publicly announced. A short film could be well, very short, a few minutes, and likely no more than ten. Even that might be pushing it. Using say, Pixar shorts as a reference, most are between 4 and 8 minutes. The original movie is an hour and 36 minutes. The “Debut” in the title indicates some sort of flashback, perhaps to when HUNTR/X first arrived on the scene before they blew up. Previously, director Maggie Kang has commented about how there were more backstory components that were supposed to be in the film that were cut, but hinted those could be explored in a sequel. But perhaps some may be put into a short here. I very much doubt those scenes were fully produced and simply cut, but perhaps they were finished up for this short film here. When would Debut: KPop Demon Hunters theoretically arrive? I’m not sure the other films on the list are much help. Dead of Winter is out in less than two weeks. Mother Mary does not have a release date. Ne Zha 2 came out earlier this year. I’ve only seen news stories saying The Perfect Gamble was supposed to come out in Q1 2025, but I’ve seen no evidence that it actually has. KPop Demon Hunters Netflix It could be sooner rather than later as Netflix looks to capitalize…
Paylaş
BitcoinEthereumNews2025/09/18 02:23