BEIJING, Dec. 22, 2025 /PRNewswire/ — WiMi Hologram Cloud Inc. (NASDAQ: WiMi) (“WiMi” or the “Company”), a leading global Hologram Augmented Reality (“AR”) TechnologyBEIJING, Dec. 22, 2025 /PRNewswire/ — WiMi Hologram Cloud Inc. (NASDAQ: WiMi) (“WiMi” or the “Company”), a leading global Hologram Augmented Reality (“AR”) Technology

WiMi Releases Next-Generation Hybrid Quantum Neural Network Structure Technology, Breaking Through the Bottleneck of Image Multi-Classification

BEIJING, Dec. 22, 2025 /PRNewswire/ — WiMi Hologram Cloud Inc. (NASDAQ: WiMi) (“WiMi” or the “Company”), a leading global Hologram Augmented Reality (“AR”) Technology provider, launched a hybrid quantum neural network structure (H-QNN) for image multi-classification. This technology organically integrates the spatial feature extraction capabilities of classical convolutional neural networks (CNN) with the high-dimensional nonlinear mapping features of quantum neural networks (QNN), forming a new type of hybrid structure that possesses stronger generalization ability and computational efficiency in multi-class classification scenarios. This technology not only systematically optimizes the quantum-classical hybrid learning system in theory but also achieves classification accuracy and stability superior to similar algorithms in actual experiments, laying a solid technical foundation for quantum intelligent vision systems.

The design of this hybrid quantum neural network (H-QNN) follows the principle of classical responsible for abstraction and quantum responsible for discrimination. The overall system consists of three main modules: feature dimensionality reduction and encoding module, quantum state transformation module, and hybrid decision and transfer learning module.

First, the feature dimensionality reduction and encoding module is based on the classical convolutional neural network (CNN) structure, extracting low-dimensional feature representations of images through several convolutional layers and pooling layers. The feature vectors after PCA dimensionality reduction are standardized and then input into the quantum encoding circuit. At this stage, WiMi adopts an improved angle encoding method (Angle Embedding) to map real-valued features to quantum state amplitudes, and achieves efficient encoding through multi-layer quantum rotation gates (Ry, Rz), thereby reducing quantum gate depth and lowering encoding noise.

Next, the quantum state transformation module undertakes the core tasks of high-dimensional feature mapping and nonlinear discrimination. This module includes several layers of quantum circuits, with each layer composed of parameterized rotation gates and controlled entanglement gates (CNOT or CZ), forming nonlinear coupling and entanglement of quantum states. To alleviate gradient vanishing, WiMi adopts a reconfigurable parameter sharing strategy, allowing different quantum layers to share some trainable parameters, while introducing mixed state perturbations to maintain gradient balance during the training process. This structural design effectively avoids the barren plateau phenomenon, enabling the model to maintain stable convergence in multi-class tasks.

Finally, the hybrid decision and transfer learning module integrates the results of quantum computing with the classical decision layer. The measurement probability distribution output by the quantum circuit is converted into feature vectors and fused with the output of the classical fully connected layer. This fused vector is input into the Softmax layer for final classification judgment. To further enhance the generalization performance in multi-class tasks, WiMi introduces a transfer learning mechanism, migrating the parameters of quantum layers pre-trained in small-sample tasks to new tasks, thereby reducing the number of training epochs and enhancing model stability.

In actual implementation, this structure supports running on simulation environments and hardware quantum processing units (QPU). The simulation environment uses high-performance GPU clusters to complete training of classical modules, while quantum modules are executed in quantum simulators or FPGA-accelerated quantum kernel estimation environments, achieving heterogeneous collaboration of classical and quantum computing resources.

The core innovation points of this technology are mainly embodied in the following aspects.

First, at the architectural design level, it achieves deep integration of convolutional neural networks (CNN) and quantum neural networks (QNN). Traditional quantum hybrid models usually simply embed the quantum part as a classification head, whereas the H-QNN proposed in this research adopts a three-stage distributed structure of “convolutional feature extraction—quantum mapping—hybrid decision-making”, enabling the quantum part not only to undertake nonlinear discrimination but also to achieve information reconstruction at the feature space level.

Second, at the encoding strategy level, the joint dimensionality reduction scheme of angle encoding and principal component analysis (PCA) proposed by WiMi effectively solves the quantum encoding dimension limitation problem. By optimizing the cumulative variance contribution rate of PCA, it ensures that the mapping between input features and quantum state amplitudes maintains high information fidelity, thereby maximizing the utilization rate of quantum information.

Third, at the training strategy level, WiMi introduces a transfer learning mechanism and parameter sharing structure. Traditional quantum neural networks often face risks of gradient vanishing and overfitting in multi-class classification training, while parameter sharing can establish balanced gradient flow between different quantum layers, and the transfer learning mechanism enables the model to achieve rapid convergence on new tasks with fewer training epochs. In addition, WiMi designs an early stopping strategy based on the quantum Fidelity metric, which determines whether the training has reached the optimal point by monitoring the stability of quantum state evolution, thereby preventing overfitting.

Finally, at the system implementation level, it adopts a heterogeneous computing architecture, running the classical computing part on CPU/GPU platforms, while the quantum part is executed in quantum simulation modules implemented on FPGA. The FPGA module realizes reconfigurable execution logic for parameterized quantum circuits, capable of completing quantum state updates within nanosecond-level response times, thereby significantly improving the overall training speed of the system. This hybrid computing architecture demonstrates performance advantages far exceeding pure CPU or GPU simulations in experiments.

The proposal of WiMi’s hybrid quantum neural network structure marks a key step in quantum artificial intelligence research moving from theoretical exploration toward practical applications. It not only demonstrates the potential advantages of quantum computing in the field of machine learning but also provides an engineered compromise solution for the current performance bottlenecks of quantum hardware. By embedding trainable quantum layers into the foundation of classical neural networks, this technology achieves efficient utilization of quantum computing resources, enabling quantum advantages to be embodied in real visual tasks. In the future, quantum intelligence will no longer be merely a theoretical conception but will deeply integrate with fields such as deep learning, computer vision, and edge computing, becoming an important driving force for promoting the development of intelligent society. Let quantum intelligence move from the laboratory to the real world, and let quantum technology truly serve industrial upgrades and the expansion of human cognition.

About WiMi Hologram Cloud

WiMi Hologram Cloud Inc. (NASDAQ: WiMi) focuses on holographic cloud services, primarily concentrating on professional fields such as in-vehicle AR holographic HUD, 3D holographic pulse LiDAR, head-mounted light field holographic devices, holographic semiconductors, holographic cloud software, holographic car navigation, metaverse holographic AR/VR devices, and metaverse holographic cloud software. It covers multiple aspects of holographic AR technologies, including in-vehicle holographic AR technology, 3D holographic pulse LiDAR technology, holographic vision semiconductor technology, holographic software development, holographic AR virtual advertising technology, holographic AR virtual entertainment technology, holographic ARSDK payment, interactive holographic virtual communication, metaverse holographic AR technology, and metaverse virtual cloud services. WiMi is a comprehensive holographic cloud technology solution provider. For more information, please visit http://ir.wimiar.com.

Translation Disclaimer

The original version of this announcement is the officially authorized and only legally binding version. If there are any inconsistencies or differences in meaning between the Chinese translation and the original version, the original version shall prevail. WiMi Hologram Cloud Inc. and related institutions and individuals make no guarantees regarding the translated version and assume no responsibility for any direct or indirect losses caused by translation inaccuracies.

Investor Inquiries, please contact:

WIMI Hologram Cloud Inc.
Email: [email protected]

ICR, LLC
Robin Yang
Tel: +1 (646) 975-9495
Email: [email protected]

Cision View original content:https://www.prnewswire.com/news-releases/wimi-releases-next-generation-hybrid-quantum-neural-network-structure-technology-breaking-through-the-bottleneck-of-image-multi-classification-302648081.html

SOURCE WiMi Hologram Cloud Inc.

Piyasa Fırsatı
QUANTUM Logosu
QUANTUM Fiyatı(QUANTUM)
$0.003245
$0.003245$0.003245
-0.09%
USD
QUANTUM (QUANTUM) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Stellar price forecast: XLM stays below $0.22 as bearish momentum remains

Stellar price forecast: XLM stays below $0.22 as bearish momentum remains

Key takeaways XLM is down by less than 1% and is trading below $0.22. The coin could retest the $0.20 support level if the bearish trend continues.  The cryptocurrency
Paylaş
Coin Journal2025/12/25 15:41
Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be

The post Why The Green Bay Packers Must Take The Cleveland Browns Seriously — As Hard As That Might Be appeared on BitcoinEthereumNews.com. Jordan Love and the Green Bay Packers are off to a 2-0 start. Getty Images The Green Bay Packers are, once again, one of the NFL’s better teams. The Cleveland Browns are, once again, one of the league’s doormats. It’s why unbeaten Green Bay (2-0) is a 8-point favorite at winless Cleveland (0-2) Sunday according to betmgm.com. The money line is also Green Bay -500. Most expect this to be a Packers’ rout, and it very well could be. But Green Bay knows taking anyone in this league for granted can prove costly. “I think if you look at their roster, the paper, who they have on that team, what they can do, they got a lot of talent and things can turn around quickly for them,” Packers safety Xavier McKinney said. “We just got to kind of keep that in mind and know we not just walking into something and they just going to lay down. That’s not what they going to do.” The Browns certainly haven’t laid down on defense. Far from. Cleveland is allowing an NFL-best 191.5 yards per game. The Browns gave up 141 yards to Cincinnati in Week 1, including just seven in the second half, but still lost, 17-16. Cleveland has given up an NFL-best 45.5 rushing yards per game and just 2.1 rushing yards per attempt. “The biggest thing is our defensive line is much, much improved over last year and I think we’ve got back to our personality,” defensive coordinator Jim Schwartz said recently. “When we play our best, our D-line leads us there as our engine.” The Browns rank third in the league in passing defense, allowing just 146.0 yards per game. Cleveland has also gone 30 straight games without allowing a 300-yard passer, the longest active streak in the NFL.…
Paylaş
BitcoinEthereumNews2025/09/18 00:41
Transforming Smiles in Shreveport: A Modern Approach to Orthodontic Care

Transforming Smiles in Shreveport: A Modern Approach to Orthodontic Care

A confident smile can change the way a person feels, speaks, and connects with others. In Northwest Louisiana, families searching for expert orthodontic care often
Paylaş
Techbullion2025/12/25 16:25