Theoretical physicists said we could teleport data. I wanted to see if we could hold it long enough to actually use it. A qubit’s memory (coherence time) lasts Theoretical physicists said we could teleport data. I wanted to see if we could hold it long enough to actually use it. A qubit’s memory (coherence time) lasts

Quantum Oracles Have a Fatal Timing Problem — So I Built a “Parking Brake” for Qubits

Theoretical physicists said we could teleport data. I wanted to see if we could hold it long enough to actually use it.

Everyone in the blockchain space wants a “Quantum Oracle.” The dream is simple: a system that allows a smart contract on Ethereum to request a calculation from a Quantum Computer, get the result, and verify it cryptographically.

But there is a fatal flaw in this dream that most whitepapers ignore: The Speed Mismatch.

Blockchains are slow. A transaction takes seconds or minutes to finalize. Quantum computers are fast. A qubit’s memory (coherence time) lasts only about 100 microseconds before it decays into random noise.

This creates a “disconnect.” If a smart contract asks for data, the quantum state will dissolve and die long before the blockchain is ready to receive it. It is like trying to pour a gallon of water into a thimble — it just spills everywhere.

I realized that if we ever want a functional Quantum Notary, we don’t need better qubits. We need a Parking Brake.

The Engineering Challenge: Building an Async Adapter

I didn’t invent quantum teleportation, and I didn’t invent the blockchain. My goal was to build the Middleware that allows them to talk to each other.

I call this the “Async Adapter.”

The goal was to create a script that could:

  1. Generate a specific quantum state (the “contract”).
  2. Teleport it off the main processor to a “storage” qubit (the “Grid”).
  3. Hold it there — keeping it alive past its natural expiration date.
  4. Retrieve it only when verified.

To prove this was possible, I turned to the IBM Quantum Cloud and their latest Heron processor (ibm_fez).

The Solution: Active Preservation (The Hahn Echo)

In my initial tests, simply moving the data to storage wasn’t enough. The magnetic noise of the environment killed the qubit in about 90 to 100 microseconds. That is the hardware limit.

To break this limit, I implemented a technique from the 1950s called the Hahn Echo, but I applied it inside a modern Dynamic Circuit.

Think of a qubit like a spinning top. If you leave it on a table, friction slows it down and it falls over. But if you reach in halfway through the spin and “slap” it in the reverse direction, you can effectively cancel out the friction.

\ \ I wrote a script that:

  1. Teleports the data to Qubit 2 (The Grid).
  2. Waits for a specific delay (e.g., 75 microseconds).
  3. Applies an X gate (the "slap") to flip the qubit.
  4. Waits another 75 microseconds.
  5. Flips it back.

By doing this, I forced the environmental noise to cancel itself out. I wasn’t just storing data; I was putting it on “Life Support.”

The Results: Beating the Hardware Limit

I ran a stress test on the ibm_fez backend to see if this architecture could actually extend the life of the data.

The results were definitive.

  • At 0 microseconds (Baseline): The system had 91.0% fidelity. This is our “perfect” score.
  • At 50 microseconds: We retained 77.9% fidelity.
  • At 150 microseconds: We retained 61.9% fidelity.

This is the breakthrough. The natural “death” of a qubit on this chip usually happens around 100 microseconds. By using my active Echo protocol, I successfully retrieved a recognizable signal at 150 microseconds.

I extended the validity window of the data by roughly 50% beyond the hardware’s natural limit.

Why This Matters for Web3

To a human, 150 microseconds is nothing. But to a computer engineer, that extra time is the difference between a “glitch” and a “feature.”

That extra 50% is the buffer zone. It proves that we can engineer a system where a quantum state is held in Escrow — parked safely on a Grid qubit, actively stabilized by software, waiting for the verification logic to complete.

I have effectively built a prototype for Quantum RAM.

This validates the core thesis of my Quantum Notary concept: We don’t need to wait for “perfect” quantum computers to build Web3 Oracles. We just need better driver software that manages the chaos of the noise.

Open Source and Future Work

I am not hoarding this code. I believe this “Time Bridge” architecture is public infrastructure. The code verifies that we can utilize mid-circuit measurements and dynamic resets to create a “Swap Space” for quantum information.

You can find the full repository on my GitHub. I encourage other developers to take this “Memory Buffer” and integrate it into their own Oracle designs.

We have the ink (Qubits). Now we finally have the pen.

Want to see the proof? Here is the GitHub with the Notebook in it:

https://github.com/damianwgriggs/Quantum-Notary-/blob/main/Quantum_Notary_Experiment.ipynb

\

Piyasa Fırsatı
QUANTUM Logosu
QUANTUM Fiyatı(QUANTUM)
$0,003182
$0,003182$0,003182
+0,06%
USD
QUANTUM (QUANTUM) Canlı Fiyat Grafiği
Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

Egrag Crypto: XRP Could be Around $6 or $7 by Mid-November Based on this Analysis

Egrag Crypto: XRP Could be Around $6 or $7 by Mid-November Based on this Analysis

Egrag Crypto forecasts XRP reaching $6 to $7 by November. Fractal pattern analysis suggests a significant XRP price surge soon. XRP poised for potential growth based on historical price patterns. The cryptocurrency community is abuzz after renowned analyst Egrag Crypto shared an analysis suggesting that XRP could reach $6 to $7 by mid-November. This prediction is based on the study of a fractal pattern observed in XRP’s past price movements, which the analyst believes is likely to repeat itself in the coming months. According to Egrag Crypto, the analysis hinges on fractal patterns, which are used in technical analysis to identify recurring market behavior. Using the past price charts of XRP, the expert has found a certain fractal that looks similar to the existing market structure. The trend indicates that XRP will soon experience a great increase in price, and the asset will probably reach the $6 or $7 range in mid-November. The chart shared by Egrag Crypto points to a rising trend line with several Fibonacci levels pointing to key support and resistance zones. This technical structure, along with the fractal pattern, is the foundation of the price forecast. As XRP continues to follow the predicted trajectory, the analyst sees a strong possibility of it reaching new highs, especially if the fractal behaves as expected. Also Read: Why XRP Price Remains Stagnant Despite Fed Rate Cut #XRP – A Potential Similar Set-Up! I've been analyzing the yellow fractal from a previous setup and trying to fit it into various formations. Based on the fractal formation analysis, it suggests that by mid-November, #XRP could be around $6 to $7! Fractals can indeed be… pic.twitter.com/HmIlK77Lrr — EGRAG CRYPTO (@egragcrypto) September 18, 2025 Fractal Analysis: The Key to XRP’s Potential Surge Fractals are a popular tool for market analysis, as they can reveal trends and potential price movements by identifying patterns in historical data. Egrag Crypto’s focus on a yellow fractal pattern in XRP’s price charts is central to the current forecast. Having contrasted the market scenario at the current period and how it was at an earlier time, the analyst has indicated that XRP might revert to the same price scenario that occurred at a later cycle in the past. Egrag Crypto’s forecast of $6 to $7 is based not just on the fractal pattern but also on broader market trends and technical indicators. The Fibonacci retracements and extensions will also give more insight into the price levels that are likely to be experienced in the coming few weeks. With mid-November in sight, XRP investors and traders will be keeping a close eye on the market to see if Egrag Crypto’s analysis is true. If the price targets are reached, XRP could experience one of its most significant rallies in recent history. Also Read: Top Investor Issues Advance Warning to XRP Holders – Beware of this Risk The post Egrag Crypto: XRP Could be Around $6 or $7 by Mid-November Based on this Analysis appeared first on 36Crypto.
Paylaş
Coinstats2025/09/18 18:36
Moto completes $1.8 million pre-seed funding round for its Solana eco-credit card project.

Moto completes $1.8 million pre-seed funding round for its Solana eco-credit card project.

PANews reported on December 17th that Moto, an on-chain credit card project, announced the completion of a $1.8 million Pre-Seed funding round, led by Eterna Capital
Paylaş
PANews2025/12/17 22:15
Why Investors Choose Pepeto As 2025’s Best Crypto: The Next Bitcoin Story

Why Investors Choose Pepeto As 2025’s Best Crypto: The Next Bitcoin Story

Desks still pass that story around because it’s proof that one coin can change everything. And the question that always […] The post Why Investors Choose Pepeto As 2025’s Best Crypto: The Next Bitcoin Story appeared first on Coindoo.
Paylaş
Coindoo2025/09/18 04:39