This article explains how distributed systems maintain trust and consistency using gossip-based replication, partial and multi-signature proofs, and M-of-N network connections. The gossip protocol ensures efficient data sharing among peers without redundancy. Proof of correctness validates signatures mathematically, while multi-signatures aggregate trust across nodes. Finally, M-of-N networking reduces overhead while preserving consensus guarantees. Together, these mechanisms form the backbone of scalable, resilient, and secure decentralized systems.This article explains how distributed systems maintain trust and consistency using gossip-based replication, partial and multi-signature proofs, and M-of-N network connections. The gossip protocol ensures efficient data sharing among peers without redundancy. Proof of correctness validates signatures mathematically, while multi-signatures aggregate trust across nodes. Finally, M-of-N networking reduces overhead while preserving consensus guarantees. Together, these mechanisms form the backbone of scalable, resilient, and secure decentralized systems.

Gossip Protocol Replication, Multi-Signatures, and M-of-N Consensus Explained

2025/10/02 17:30

Abstract and 1. Introduction

  1. System model

  2. Initial node state

  3. Append process

    4.1 Local append

    4.2 Append from another node

    4.3 Record validation

    4.4 State consistency

  4. Replication process

  5. Proof of correctness

  6. M-of-N connections

  7. Extensions and optimizations

References

5. Replication process

The algorithm uses Gossip-like approach for replication and works as follows:

\

  1. Gossiping happens in an infinite loop. On each loop (let’s call it round) node (let’s call it node A) choose randomly one peer (let’s call it node B) with which it should gossip.

    \

  2. Then node A sends message to node B. The message includes timestamp and timestamp index from which node A expects to get updates from node B. It’s like a pagination (i.e. give me all records, which timestamp is higher than ). Also keep in mind, that node A should store last requested timestamp and timestamp index for node B (in order not to request the same records again). If there wasn’t communication before, then node A sends timestamp = 0 and timestampIndex = 0

    \

  3. Node B prepare an array of records which satisfy the provided timestamp and timestampIndex from node A (i.e. filter 𝑟𝑒𝑐𝑜𝑟𝑑𝐵.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 > 𝑟𝑒𝑐𝑜𝑟𝑑𝐴.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝|| (𝑟𝑒𝑐𝑜𝑟𝑑𝐴.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 === 𝑟𝑒𝑐𝑜𝑟𝑑𝐵.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 && 𝑟𝑒𝑐𝑜𝑟𝑑𝐵.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝐼𝑛𝑑𝑒𝑥 > 𝑟𝑒𝑐𝑜𝑟𝑑𝐴.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝐼𝑛𝑑𝑒𝑥))

    \

  4. Node B sends records back to Node A as array of records with some limit (like no more than 10 records in one request, to prevent traffic flooding). The limit option can be set in algorithm parameters

    \

  5. Node A receive these records, sort them in ASC order, and apply them (the logic is described in “Append process / append from another node”)

    \

  6. After append, node A updates last requested timestamp and timestampIndex for node B to the timestamp and timestampIndex from the last record received from node B (sorted in ASC order)

    \

  7. Then protocol awaits for random amount of milliseconds taken from range (the minimum and maximum time is specified in consensus parameters, check section 2). Once timeout expires – the process starts over

\

6. Proof of correctness

6.1 Partial signature

  1. The general formula for obtaining partial signature is: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ

    \

  2. The validation is: 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑟𝑢𝑒 ∗ 𝐺 = 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ

    \

  3. The correctness: 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 = 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦 ∗ 𝐺 => 𝑝𝑟𝑖𝑣𝑎𝑡𝑒𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ ∗ 𝐺 = 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ => 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ∗ 𝐺 = 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ

6.2 multi signature

  1. The general formula for building multisig is: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 = ∑ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖

    \

  2. The general formula for building multi public key is: 𝑠ℎ𝑎𝑟𝑒𝑑𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 = ∑ 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 ∗ ℎ𝑎𝑠ℎ

    \

  3. The validation of signature: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ∗ 𝐺 = 𝑠ℎ𝑎𝑟𝑒𝑑𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ

    \

  4. The correctness of signature: 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ∗ 𝐺 = 𝑠ℎ𝑎𝑟𝑒𝑑𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ => ∑ 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 𝑖 ∗ 𝐺 = ∑ 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦𝑖 ∗ ℎ𝑎𝑠ℎ => 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 ∗ 𝐺 = 𝑝𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦 ∗ ℎ𝑎𝑠ℎ

\

7. M-of-N connections

The following algorithm allows to build M-of-N connections network. This simply means, that there is no strict requirement, that all nodes should have connections between each other. This approach helps to define more efficient networking. However, keep in mind, that in order to guarantee consensus each node should have at least 𝑓 + 1 connections.

\

:::info Author:

(1) Egor Zuev ([email protected])

:::


:::info This paper is available on arxiv under CC0 1.0 UNIVERSAL license.

:::

\

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.

Ayrıca Şunları da Beğenebilirsiniz

How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings

The post How to earn from cloud mining: IeByte’s upgraded auto-cloud mining platform unlocks genuine passive earnings appeared on BitcoinEthereumNews.com. contributor Posted: September 17, 2025 As digital assets continue to reshape global finance, cloud mining has become one of the most effective ways for investors to generate stable passive income. Addressing the growing demand for simplicity, security, and profitability, IeByte has officially upgraded its fully automated cloud mining platform, empowering both beginners and experienced investors to earn Bitcoin, Dogecoin, and other mainstream cryptocurrencies without the need for hardware or technical expertise. Why cloud mining in 2025? Traditional crypto mining requires expensive hardware, high electricity costs, and constant maintenance. In 2025, with blockchain networks becoming more competitive, these barriers have grown even higher. Cloud mining solves this by allowing users to lease professional mining power remotely, eliminating the upfront costs and complexity. IeByte stands at the forefront of this transformation, offering investors a transparent and seamless path to daily earnings. IeByte’s upgraded auto-cloud mining platform With its latest upgrade, IeByte introduces: Full Automation: Mining contracts can be activated in just one click, with all processes handled by IeByte’s servers. Enhanced Security: Bank-grade encryption, cold wallets, and real-time monitoring protect every transaction. Scalable Options: From starter packages to high-level investment contracts, investors can choose the plan that matches their goals. Global Reach: Already trusted by users in over 100 countries. Mining contracts for 2025 IeByte offers a wide range of contracts tailored for every investor level. From entry-level plans with daily returns to premium high-yield packages, the platform ensures maximum accessibility. Contract Type Duration Price Daily Reward Total Earnings (Principal + Profit) Starter Contract 1 Day $200 $6 $200 + $6 + $10 bonus Bronze Basic Contract 2 Days $500 $13.5 $500 + $27 Bronze Basic Contract 3 Days $1,200 $36 $1,200 + $108 Silver Advanced Contract 1 Day $5,000 $175 $5,000 + $175 Silver Advanced Contract 2 Days $8,000 $320 $8,000 + $640 Silver…
Paylaş
BitcoinEthereumNews2025/09/17 23:48