Artikel ini menguraikan pendekatan pembelajaran mesin yang memprediksi perubahan kode rentan sebelum pengiriman, menunjukkan presisi tinggi pada dataset sumber terbuka yang besar, dan menyerukan berbagi data kredibilitas pengembang di seluruh komunitas untuk memperkuat keamanan rantai pasokan perangkat lunak.Artikel ini menguraikan pendekatan pembelajaran mesin yang memprediksi perubahan kode rentan sebelum pengiriman, menunjukkan presisi tinggi pada dataset sumber terbuka yang besar, dan menyerukan berbagi data kredibilitas pengembang di seluruh komunitas untuk memperkuat keamanan rantai pasokan perangkat lunak.

Alat ML Mendeteksi 80% Commit yang Menyebabkan Kerentanan Sebelum Waktunya

ABSTRAK

I. PENDAHULUAN

II. LATAR BELAKANG

III. DESAIN

  • DEFINISI
  • TUJUAN DESAIN
  • KERANGKA KERJA
  • EKSTENSI

IV. PEMODELAN

  • PENGKLASIFIKASI
  • FITUR

V. PENGUMPULAN DATA

VI. KARAKTERISASI

  • LATENSI PERBAIKAN KERENTANAN
  • ANALISIS PERUBAHAN PERBAIKAN KERENTANAN
  • ANALISIS PERUBAHAN PENYEBAB KERENTANAN

VII. HASIL

  • VALIDASI N-FOLD
  • EVALUASI MENGGUNAKAN MODE PENERAPAN ONLINE

VIII. DISKUSI

  • IMPLIKASI PADA MULTI-PROYEK
  • IMPLIKASI PADA KARYA KEAMANAN ANDROID
  • ANCAMAN TERHADAP VALIDITAS
  • PENDEKATAN ALTERNATIF

IX. KARYA TERKAIT

KESIMPULAN DAN REFERENSI

\ \

X. KESIMPULAN

Makalah ini menyajikan pendekatan pengujian keamanan preventif praktis yang didasarkan pada prediksi online yang akurat tentang perubahan kode yang kemungkinan rentan pada waktu pra-submit. Kami menyajikan tiga jenis data fitur baru yang efektif dalam prediksi kerentanan dan mengevaluasi recall dan presisi mereka melalui validasi N-fold menggunakan data dari proyek sumber terbuka Android yang besar dan penting.

\ Kami juga mengevaluasi mode penerapan online, dan mengidentifikasi subset jenis data fitur yang tidak spesifik untuk proyek target di mana data pelatihan dikumpulkan dan dengan demikian dapat digunakan untuk proyek lain (misalnya, pengaturan multi-proyek). Hasil evaluasi menunjukkan bahwa kerangka kerja VP kami mengidentifikasi ~80% dari perubahan penyebab kerentanan yang dievaluasi pada waktu pra-submit dengan presisi 98% dan rasio positif palsu <1,7%.

\ Hasil positif ini mendorong penelitian masa depan (misalnya, menggunakan teknik ML dan GenAI lanjutan) untuk memanfaatkan pendekatan atau kerangka kerja VP untuk proyek sumber terbuka hulu yang dikelola oleh komunitas dan pada saat yang sama penting untuk berbagai perangkat lunak dan produk komputer yang digunakan oleh miliaran pengguna setiap hari.

\ Urgensi makalah ini berasal dari potensi manfaat sosialnya. Adopsi luas pendekatan berbasis ML seperti kerangka kerja VP dapat sangat meningkatkan kemampuan kita untuk berbagi data kredibilitas kontributor dan proyek sumber terbuka. Data bersama tersebut akan memberdayakan komunitas sumber terbuka untuk melawan ancaman seperti akun palsu (seperti yang terlihat dalam serangan backdoor Linux XZ util16).

\ Selain itu, pendekatan berbasis ML ini dapat memfasilitasi respons cepat di seluruh proyek sumber terbuka ketika serangan yang direncanakan jangka panjang muncul. Berbagi informasi di antara proyek serupa atau hilir meningkatkan kesiapan dan mengurangi waktu respons terhadap serangan serupa.

\ Oleh karena itu, kami menyerukan inisiatif komunitas sumber terbuka untuk membangun praktik berbagi database kredibilitas pengembang dan proyek untuk memperkuat rantai pasokan perangkat lunak sumber terbuka yang menjadi tumpuan banyak produk komputer dan perangkat lunak.

\

REFERENSI

[1] T. Menzies, J. Greenwald, and A. Frank, "Data Mining Static Code Attributes to Learn Defect Predictors," IEEE Transactions on Software Engineering, 33(1):2-13, 2007.

[2] M. Halstead, Elements of Software Science, Elsevier, 1977.

[3] T. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering, 2(4):308-320, 1976.

[4] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufman, 1992.

[5] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. Murphy, "Cross-project defect prediction: a large scale experiment on data vs. domain vs. process," in Proceedings of the Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 91-100, 2009.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An Empirical Study of Operating Systems Errors," in Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pp. 73-88, 2001.

[7] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and A. Zeller, "Predicting Faults from Cached History," in Proceedings of the ACM International Conference on Software Engineering (ICSE), pp. 489- 498, 2007.

[8] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. Devanbu, "BugCache for inspections," in Proceedings of the ACM SIGSOFT Symposium and the European Conference on Foundations of Software Engineering (SIGSOFT/FSE), p. 322, 2011.

[9] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr., "Does bug prediction support human developers? findings from a google case study," in Proceedings of the International Conference on Software Engineering (ICSE), pp. 372-381, 2013.

[10] J. Walden, J. Stuckman, and R. Scandariato, "Predicting Vulnerable Components: Software Metrics vs Text Mining," in Proceedings of the IEEE International Symposium on Software Reliability Engineering, pp. 23-33, 2014.

[11] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An empirical study of operating systems errors," in Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pp. 73-88, 2001.

[12] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE Transactions on Software Engineering, 20(6):476-493, 1994.

[13] R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993.

[14] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, "An empirical study of operating systems errors," in Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), pp. 73-88, 2001.

[15] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus, B. K. Ray, and M-Y. Wong, "Orthogonal defect classification-a concept for in-process measurements", IEEE Transactions on Software Engineering, 18(11):943-956, 1992.

[16] R. Natella, D. Cotroneo, and H. Madeira, "Assessing Dependability with Software Fault Injection: A Survey", ACM Computing Surveys, 48(3), 2016.

[17] K. S. Yim, "Norming to Performing: Failure Analysis and Deployment Automation of Big Data Software Developed by Highly Iterative Models," in Proceedings of the IEEE International Symposium on Software Reliability Engineering (ISSRE), pp. 144-155, 2014.

[18] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE Transactions on Software Engineering, 20(6):476-493, 1994.

[19] K. S. Yim, "Assessment of Security Defense of Native Programs Against Software Faults," System Dependability and Analytics, Springer Series in Reliability Engineering, Springer, Cham., 2023.

[20] M. Fourné, D. Wermke, S. Fahl and Y. Acar, "A Viewpoint on Human Factors in Software Supply Chain Security: A Research Agenda," IEEE Security & Privacy, vol. 21, no. 6, pp. 59-63, Nov.-Dec. 2023.

[21] P. Ladisa, H. Plate, M. Martinez and O. Barais, "SoK: Taxonomy of Attacks on Open-Source Software Supply Chains," in Proceedings of the IEEE Symposium on Security and Privacy (SP), pp. 1509-1526, 2023.

[22] D. Wermke et al., ""Always Contribute Back": A Qualitative Study on Security Challenges of the Open Source Supply Chain," in Proceedings of the IEEE Symposium on Security and Privacy (SP), pp. 1545-1560, 2023.

[23] A. Dann, H. Plate, B. Hermann, S. E. Ponta and E. Bodden, "Identifying Challenges for OSS Vulnerability Scanners - A Study & Test Suite," IEEE Transactions on Software Engineering, vol. 48, no. 9, pp. 3613-3625, 1 Sept. 2022.

[24] S. Torres-Arias, A. K. Ammula, R. Curtmola, and J. Cappos, "On omitting commits and committing omissions: Preventing git metadata tampering that (re)introduces software vulnerabilities," in Proceedings of the 25th USENIX Security Symposium, pp. 379-395, 2016.

[25] R. Goyal, G. Ferreira, C. Kastner, and J. Herbsleb, "Identifying unusual commits on github," Journal of Software: Evolution and Process, vol. 30, no. 1, p. e1893, 2018.

[26] C. Soto-Valero, N. Harrand, M. Monperrus, and B. Baudry, "A comprehensive study of bloated dependencies in the maven ecosystem," Empirical Software Engineering, vol. 26, Mar 2021.

[27] R. Duan, O. Alrawi, R. P. Kasturi, R. Elder, B. Saltaformaggio, and W. Lee, "Towards measuring supply chain attacks on package managers for interpreted languages," arXiv preprint arXiv:2002.01139, 2020.

[28] Enduring Security Framework, "Securing the software supply chain: Recommended practices guide for developers," Cybersecurity and Infrastructure Security Agency, Washington, DC, USA, August 2022.

[29] Z. Durumeric et al., "The matter of heartbleed," in Proceedings of the ACM Internet Measurement Conference, pp. 475-488, 2014.

[30] D. Everson, L. Cheng, and Z. Zhang, "Log4shell: Redefining the web attack surface," in Proceedings of the Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb), pp. 1-8, 2022.

[31] "Highly evasive attacker leverages SolarWinds supply chain to compromise multiple global victims with SUNBURST backdoor," Mandiant, available at https://www.mandiant.com/resources/blog/evasive-attackerleverages-solarwinds-supply-chain-compromises-with-sunburstbackdoor

[32] W. Enck and L. Williams, "Top five challenges in software supply chain security: Observations from 30 industry and government organizations," IEEE Security Privacy, vol. 20, no. 2, pp. 96-100, 2022.

[33] "CircleCI incident report for January 4, 2023 security incident." CircleCI, available at https://circleci.com/blog/jan-4-2023-incidentreport/ [34] K. Toubba, "Security incident update and recommended actions," LastPass, available at https://blog.lastpass.com/2023/03/securityincident-update-recommended-actions/

[35] D. Wermke, N. Wöhler, J. H. Klemmer, M. Fourné, Y. Acar, and S. Fahl, "Committed to trust: A qualitative study on security & trust in open source software projects," in Proceedings of the IEEE Symposium on Security and Privacy (S&P), pp. 1880-1896, 2022.

[36] D. A. Wheeler, "Countering trusting trust through diverse doublecompiling," in Proceedings of the IEEE Annual Computer Security Applications Conference (ACSAC), pp. 13-48, 2005.

[37] K. S. Yim, I. Malchev, A. Hsieh, and D. Burke, "Treble: Fast Software Updates by Creating an Equilibrium in an Active Software Ecosystem of Globally Distributed Stakeholders," ACM Transactions on Embedded Computing Systems, 18(5s):104, 2019.

[38] G. Holmes, A. Donkin, and I. H. Witten, "WEKA: a machine learning workbench," in Proceedings of the Australian New Zealnd Intelligent Information Systems Conference (ANZIIS), pp. 357-361, 1994.

[39] D. Yeke, M. Ibrahim, G. S. Tuncay, H. Farrukh, A. Imran, A. Bianchi, and Z. B. Celik,, "Wear's my Data? Understanding the Cross-Device Runtime Permission Model in Wearables," in Proceedings of the 2024 IEEE Symposium on Security and Privacy (SP), pp. 76-76, 2024.

[40] G. S. Tuncay, J. Qian, C. A. Gunter, "See No Evil: Phishing for Permissions with False Transparency," in Proceedings

Peluang Pasar
Logo Mintlayer
Harga Mintlayer(ML)
$0.01319
$0.01319$0.01319
+1.22%
USD
Grafik Harga Live Mintlayer (ML)
Penafian: Artikel yang diterbitkan ulang di situs web ini bersumber dari platform publik dan disediakan hanya sebagai informasi. Artikel tersebut belum tentu mencerminkan pandangan MEXC. Seluruh hak cipta tetap dimiliki oleh penulis aslinya. Jika Anda meyakini bahwa ada konten yang melanggar hak pihak ketiga, silakan hubungi [email protected] agar konten tersebut dihapus. MEXC tidak menjamin keakuratan, kelengkapan, atau keaktualan konten dan tidak bertanggung jawab atas tindakan apa pun yang dilakukan berdasarkan informasi yang diberikan. Konten tersebut bukan merupakan saran keuangan, hukum, atau profesional lainnya, juga tidak boleh dianggap sebagai rekomendasi atau dukungan oleh MEXC.