This article benchmarks the GPT-3.5 LLM on multi-hop reasoning datasets, finding that RECKONING's performance significantly surpasses both zero-shot and few-shot GPT-3.5 prompting.This article benchmarks the GPT-3.5 LLM on multi-hop reasoning datasets, finding that RECKONING's performance significantly surpasses both zero-shot and few-shot GPT-3.5 prompting.

The Strength of Dynamic Encoding: RECKONING Outperforms Zero-Shot GPT-3.5 in Distractor Robustness

2025/10/29 23:57

Abstract and 1. Introduction

  1. Background

  2. Method

  3. Experiments

    4.1 Multi-hop Reasoning Performance

    4.2 Reasoning with Distractors

    4.3 Generalization to Real-World knowledge

    4.4 Run-time Analysis

    4.5 Memorizing Knowledge

  4. Related Work

  5. Conclusion, Acknowledgements, and References

\ A. Dataset

B. In-context Reasoning with Distractors

C. Implementation Details

D. Adaptive Learning Rate

E. Experiments with Large Language Models

E Experiments with Large Language Models

\ Recently, Large Language Models (LLMs) with large parameter sizes learned from human preferences have shown remarkable performance in language understanding and generation. These LLMs are powerful zero-shot and few-shot reasoners. Recent works find that LLMs learn to perform multi-step reasoning by first generating new reasoning chains and then predicting the answers. In this experiment, we benchmark the performance of a popular new LLM, GPT-3.5, on the two multi-hop reasoning datasets we used in our paper. We first evaluate GPT-3.5’s zero-shot reasoning performance in predicting the correct answers. As Table 10 shows, zero-shot prompting GPT-3.5 significantly underperforms RECKONING’s performance. GPT-3.5’s performance improves on ProofWriter without distractors but still is behind the performance of RECKONING. When distractors are present in the context, RECKONING performs much better than zero-shot and few-shot GPT-3.5 prompting. This highlights RECKONING’s strength in disentangling irrelevant information from useful knowledge, an ability that even powerful LLMs like GPT-3.5 lack.

\

:::info Authors:

(1) Zeming Chen, EPFL ([email protected]);

(2) Gail Weiss, EPFL ([email protected]);

(3) Eric Mitchell, Stanford University ([email protected])';

(4) Asli Celikyilmaz, Meta AI Research ([email protected]);

(5) Antoine Bosselut, EPFL ([email protected]).

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Sorumluluk Reddi: Bu sitede yeniden yayınlanan makaleler, halka açık platformlardan alınmıştır ve yalnızca bilgilendirme amaçlıdır. MEXC'nin görüşlerini yansıtmayabilir. Tüm hakları telif sahiplerine aittir. Herhangi bir içeriğin üçüncü taraf haklarını ihlal ettiğini düşünüyorsanız, kaldırılması için lütfen [email protected] ile iletişime geçin. MEXC, içeriğin doğruluğu, eksiksizliği veya güncelliği konusunda hiçbir garanti vermez ve sağlanan bilgilere dayalı olarak alınan herhangi bir eylemden sorumlu değildir. İçerik, finansal, yasal veya diğer profesyonel tavsiye niteliğinde değildir ve MEXC tarafından bir tavsiye veya onay olarak değerlendirilmemelidir.